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There are hundreds of inflation models consistent with the observational data

B The calculation on �end for Model-II 18

1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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Z
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The simplest scenario is based upon a single scalar field minimally coupled to 
gravity
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.

P.A.R. Ade et al. Astron. Astrophys. 594 (2016) A20
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2009, 2013), or PolyChord, which combines nested sam-
pling with slice sampling (Handley et al., 2015). The latter
two also compute the Bayesian evidence needed for model
comparison. Nevertheless, �2 values are often provided as
well (using CosmoMC’s implementation of the BOBYQA algo-
rithm (Powell, 2009) for maximizing the likelihood), and other
parts of the paper employ frequentist methods when appropriate.

4. Constraints on the primordial spectrum of
curvature perturbations

One of the most important results of the Planck nominal mission
was the determination of the departure from scale invariance for
the spectrum of scalar perturbations at high statistical signifi-
cance (Planck Collaboration XVI, 2014; Planck Collaboration
XXII, 2014). We now update these measurements with the
Planck full mission data in temperature and polarization.

4.1. Tilt of the curvature power spectrum

For the base ⇤CDM model with a power-law power spectrum
of curvature perturbations, the constraint on the scalar spectral
index, ns, with the Planck full mission temperature data is

ns = 0.9655 ± 0.0062 (68 % CL, Planck TT+lowP) . (14)

This result is compatible with the Planck 2013 constraint,
ns = 0.9603 ± 0.0073 (Planck Collaboration XV, 2014; Planck
Collaboration XVI, 2014). See Fig. 3 for the accompanying
changes in ⌧, ⌦bh2, and ✓MC. The shift towards higher values
for ns with respect to the nominal mission results is due to sev-
eral improvements in the data processing and likelihood which
are discussed in Sect. 3, including the removal of the 4 K cooler
systematics. For the values of other cosmological parameters in
the base ⇤CDM model, see Table 3. We also provide the results
for the base ⇤CDM model and extended models online.5

When the Planck high-` polarization is combined with tem-
perature, we obtain

ns = 0.9645 ± 0.0049 (68 % CL, Planck TT,TE,EE+lowP),
(15)

together with ⌧ = 0.079 ± 0.017 (68 % CL), which is consis-
tent with the TT+lowP results. The Planck high-` polarization
pulls ⌧ up to a slightly higher value. When the Planck lensing
measurement is added to the temperature data, we obtain

ns = 0.9677 ± 0.0060 (68 % CL, Planck TT+lowP+lensing),
(16)

with ⌧ = 0.066 ± 0.016 (68 % CL). The shift towards slightly
smaller values of the optical depth is driven by a marginal pref-
erence for a smaller primordial amplitude, As, in the Planck
lensing data (Planck Collaboration XV, 2016). Given that the
temperature data provide a sharp constraint on the combination
e�2⌧As, a slightly lower As requires a smaller optical depth to
reionization.

4.2. Viability of the Harrison-Zeldovich spectrum

Even though the estimated scalar spectral index has risen slightly
with respect to the Planck 2013 release, the assumption of
a Harrison-Zeldovich (HZ) scale-invariant spectrum (Harrison,
1970; Peebles & Yu, 1970; Zeldovich, 1972) continues to be

5
http://www.cosmos.esa.int/web/planck/pla

disfavoured (with a modest increase in significance, from 5.1�
in 2013 to 5.6� today), because the error bar on ns has de-
creased. The value of ns inferred from the Planck 2015 tem-
perature plus large-scale polarization data lies 5.6 standard de-
viations away from unity (with a corresponding ��2 = 29.9),
if one assumes the base ⇤CDM late-time cosmological model.
If we consider more general reionization models, parameterized
by a principal component analysis (Mortonson & Hu, 2008) in-
stead of ⌧ (where reionization is assumed to have occurred in-
stantaneously), we find ��2 = 14.9 for ns = 1. Previously,
simple one-parameter extensions of the base model, such as
⇤CDM+Ne↵ (where Ne↵ is the effective number of neutrino
flavours) or ⇤CDM+YP (where YP is the primordial value of the
helium mass fraction), could nearly reconcile the Planck tem-
perature data with ns = 1. They now lead to ��2 = 7.6 and 9.3,
respectively. For any of the cosmological models that we have
considered, the ��2 by which the HZ model is penalized with
respect to the tilted model has increased since the 2013 analy-
sis (PCI13) thanks to the constraining power of the full mission
temperature data. Adding Planck high-` polarization data further
disfavours the HZ model: in⇤CDM, the �2 increases by 57.8, for
general reionization we obtain ��2 = 41.3, and for ⇤CDM+Ne↵
and ⇤CDM+YP we find ��2 = 22.5 and 24.0, respectively.

4.3. Running of the spectral index

The running of the scalar spectral index is constrained by the
Planck 2015 full mission temperature data to

dns

d ln k
= �0.0084± 0.0082 (68 % CL, Planck TT+lowP) . (17)

The combined constraint including high-` polarization is

dns

d ln k
= �0.0057±0.0071 (68 % CL, Planck TT,TE,EE+lowP) .

(18)
Adding the Planck CMB lensing data to the tempera-
ture data further reduces the central value for the running,
i.e., dns/d ln k = �0.0033 ± 0.0074 (68 % CL, Planck
TT+lowP+lensing).

The central value for the running has decreased in magni-
tude with respect to the Planck 2013 nominal mission (Planck
Collaboration XVI (2014) found dns/d ln k = �0.013 ± 0.009;
see Fig. 4), and the improvement of the maximum likelihood
with respect to a power-law spectrum is smaller, ��2

⇡ �0.8.
Among the different effects contributing to the decrease in the
central value of the running with respect to the Planck 2013 re-
sult, we mention a change in HFI beams at ` <

⇠
200 (Planck

Collaboration XIII, 2016). Nevertheless, the deficit of power at
low multipoles in the Planck 2015 temperature power spectrum
contributes to a preference for slightly negative values of the run-
ning, but with low statistical significance.

The Planck constraints on ns and dns/d ln k are remarkably
stable against the addition of the BAO likelihood. The combina-
tion with BAO shifts ns to slighly higher values and shrinks its
uncertainty by about 30 % when only high-` temperature is con-
sidered, and by only about 15 % when high-` temperature and
polarization are combined. In slow-roll inflation, the running of
the scalar spectral index is connected to the third derivative of
the potential (Kosowsky & Turner, 1995). As was the case for
the nominal mission results, values of the running compatible
with the Planck 2015 constraints can be obtained in viable infla-
tionary models (Kobayashi & Takahashi, 2011).
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iñ

o-
M

ar
tı́n

72
,2

2 ,B
.R

us
ho

lm
e63

,
M

.S
an

dr
i54

,D
.S

an
to

s84
,M

.S
av

el
ai

ne
n31
,5

0 ,G
.S

av
in

i96
,D

.S
co

tt26
,M

.D
.S

ei
ff

er
t75
,1

3 ,E
.P

.S
.S

he
lla

rd
14

,M
.S

hi
ra

is
hi

36
,7

4 ,L
.D

.S
pe

nc
er

99
,

V.
St

ol
ya

ro
v6,

10
5,

79
,R

.S
to

m
po

r1 ,R
.S

ud
iw

al
a99

,R
.S

un
ya

ev
89
,1

03
,D

.S
ut

to
n70
,7

8 ,A
.-S

.S
uu

r-
U

sk
i31
,5

0 ,J
.-F

.S
yg

ne
t67

,J
.A

.T
au

be
r47

,
L.

Te
re

nz
i98
,5

4 ,L
.T

of
fo

la
tti

23
,7

3,
54

,M
.T

om
as

i40
,5

5 ,M
.T

ris
tra

m
80

,T
.T

ro
m

be
tti

54
,M

.T
uc

ci
20

,J
.T

uo
vi

ne
n12

,L
.V

al
en

zi
an

o54
,J

.V
al

iv
iit

a31
,5

0 ,
B

.V
an

Te
nt

85
,P

.V
ie

lv
a73

,F
.V

ill
a54

,L
.A

.W
ad

e75
,B

.D
.W

an
de

lt67
,1

11
,3

5 ,I
.K

.W
eh

us
75
,7

1 ,M
.W

hi
te

33
,D

.Y
vo

n18
,A

.Z
ac

ch
ei

53
,J

.P
.Z

ib
in

26
,a

nd
A

.Z
on

ca
34

(A
ffi

lia
tio

ns
ca

n
be

fo
un

d
af

te
r

th
e

re
fe

re
nc

es
)

Pr
ep

rin
to

nl
in

e
ve

rs
io

n:
Se

pt
em

be
r1

5,
20

17

A
B

S
TR

A
C

T

W
e

pr
es

en
tt

he
im

pl
ic

at
io

ns
fo

rc
os

m
ic

in
fla

tio
n

of
th

e
Pl

an
ck

m
ea

su
re

m
en

ts
of

th
e

co
sm

ic
m

ic
ro

w
av

e
ba

ck
gr

ou
nd

(C
M

B
)a

ni
so

tro
pi

es
in

bo
th

te
m

pe
ra

tu
re

an
d

po
la

riz
at

io
n

ba
se

d
on

th
e

fu
ll

Pl
an

ck
su

rv
ey

,w
hi

ch
in

cl
ud

es
m

or
e

th
an

tw
ic

e
th

e
in

te
gr

at
io

n
tim

e
of

th
e

no
m

in
al

su
rv

ey
us

ed
fo

rt
he

20
13

R
el

ea
se

pa
pe

rs
.T

he
Pl

an
ck

fu
ll

m
is

si
on

te
m

pe
ra

tu
re

da
ta

an
d

a
fir

st
re

le
as

e
of

po
la

riz
at

io
n

da
ta

on
la

rg
e

an
gu

la
rs

ca
le

s
m

ea
su

re
th

e
sp

ec
tra

li
nd

ex
of

cu
rv

at
ur

e
pe

rtu
rb

at
io

ns
to

be
n s
=

0.
96

8
±

0.
00

6
an

d
tig

ht
ly

co
ns

tra
in

its
sc

al
e

de
pe

nd
en

ce
to

dn
s/

d
ln

k
=
�

0.
00

3
±

0.
00

7
w

he
n

co
m

bi
ne

d
w

ith
th

e
Pl

an
ck

le
ns

in
g

lik
el

ih
oo

d.
W

he
n

th
e

Pl
an

ck
hi

gh
-`

po
la

riz
at

io
n

da
ta

is
in

cl
ud

ed
,t

he
re

su
lts

ar
e

co
ns

is
te

nt
an

d
un

ce
rta

in
tie

sa
re

fu
rth

er
re

du
ce

d.
Th

e
up

pe
rb

ou
nd

on
th

e
te

ns
or

-to
-s

ca
la

rr
at

io
is

r 0
.0

02
<

0.
11

(9
5

%
C

L)
.T

hi
su

pp
er

lim
it

is
co

ns
is

te
nt

w
ith

th
e

B-
m

od
e

po
la

riz
at

io
n

co
ns

tra
in

tr
<

0.
12

(9
5

%
C

L)
ob

ta
in

ed
fr

om
a

jo
in

ta
na

ly
si

s
of

th
e

B
IC

EP
2/

K
ec

k
A

rr
ay

an
d

Pl
an

ck
da

ta
.T

he
se

re
su

lts
im

pl
y

th
at

V
(�

)/
�

2
an

d
na

tu
ra

li
nfl

at
io

n
ar

e
no

w
di

sf
av

ou
re

d
co

m
pa

re
d

to
m

od
el

s
pr

ed
ic

tin
g

a
sm

al
le

r
te

ns
or

-to
-s

ca
la

r
ra

tio
,s

uc
h

as
R2

in
fla

tio
n.

W
e

se
ar

ch
fo

r
se

ve
ra

l
ph

ys
ic

al
ly

m
ot

iv
at

ed
de

vi
at

io
ns

fr
om

a
si

m
pl

e
po

w
er

-la
w

sp
ec

tru
m

of
cu

rv
at

ur
e

pe
rtu

rb
at

io
ns

,i
nc

lu
di

ng
th

os
e

m
ot

iv
at

ed
by

a
re

co
ns

tru
ct

io
n

of
th

e
in

fla
to

n
po

te
nt

ia
ln

ot
re

ly
in

g
on

th
e

sl
ow

-r
ol

la
pp

ro
xi

m
at

io
n.

W
e

fin
d

th
at

su
ch

m
od

el
sa

re
no

tp
re

fe
rr

ed
,e

ith
er

ac
co

rd
in

g
to

a
B

ay
es

ia
n

m
od

el
co

m
pa

ris
on

or
ac

co
rd

in
g

to
a

fr
eq

ue
nt

is
ts

im
ul

at
io

n-
ba

se
d

an
al

ys
is

.T
hr

ee
in

de
pe

nd
en

tm
et

ho
ds

re
co

ns
tru

ct
in

g
th

e
pr

im
or

di
al

po
w

er
sp

ec
tru

m
co

ns
is

te
nt

ly
re

co
ve

ra
fe

at
ur

el
es

s
an

d
sm

oo
th
P
R

(k
)o

ve
rt

he
ra

ng
e

of
sc

al
es

0.
00

8
M

pc
�

1
.

k
.

0.
1

M
pc
�

1 .A
tl

ar
ge

sc
al

es
,e

ac
h

m
et

ho
d

fin
ds

de
vi

at
io

ns
fr

om
a

po
w

er
la

w
,c

on
ne

ct
ed

to
a

de
fic

it
at

m
ul

tip
ol

es
`
⇡

20
–4

0
in

th
e

te
m

pe
ra

tu
re

po
w

er
sp

ec
tru

m
,b

ut
at

an
un

co
m

pe
lli

ng
st

at
is

tic
al

si
gn

ifi
ca

nc
e

ow
in

g
to

th
e

la
rg

e
co

sm
ic

va
ria

nc
e

pr
es

en
t

at
th

es
e

m
ul

tip
ol

es
.B

y
co

m
bi

ni
ng

po
w

er
sp

ec
tru

m
an

d
no

n-
G

au
ss

ia
ni

ty
bo

un
ds

,w
e

co
ns

tra
in

m
od

el
s

w
ith

ge
ne

ra
liz

ed
La

gr
an

gi
an

s,
in

cl
ud

in
g

G
al

ile
on

m
od

el
s

an
d

ax
io

n
m

on
od

ro
m

y
m

od
el

s.
Th

e
Pl

an
ck

da
ta

ar
e

co
ns

is
te

nt
w

ith
ad

ia
ba

tic
pr

im
or

di
al

pe
rtu

rb
at

io
ns

,a
nd

th
e

es
tim

at
ed

va
lu

es
fo

rt
he

pa
ra

m
et

er
s

of
th

e
ba

se
⇤

C
D

M
m

od
el

ar
e

no
ts

ig
ni

fic
an

tly
al

te
re

d
w

he
n

m
or

e
ge

ne
ra

li
ni

tia
lc

on
di

tio
ns

ar
e

ad
m

itt
ed

.I
n

co
rr

el
at

ed
m

ix
ed

ad
ia

ba
tic

an
d

is
oc

ur
va

tu
re

m
od

el
s,

th
e

95
%

C
L

up
pe

r
bo

un
d

fo
r

th
e

no
n-

ad
ia

ba
tic

co
nt

rib
ut

io
n

to
th

e
ob

se
rv

ed
C

M
B

te
m

pe
ra

tu
re

va
ria

nc
e

is
|↵

no
n-

ad
i|
<

1.
9

%
,4

.0
%

,a
nd

2.
9

%
fo

rc
ol

d
da

rk
m

at
te

r(
C

D
M

),
ne

ut
rin

o
de

ns
ity

,a
nd

ne
ut

rin
o

ve
lo

ci
ty

is
oc

ur
va

tu
re

m
od

es
,r

es
pe

ct
iv

el
y.

W
e

ha
ve

te
st

ed
in

fla
tio

na
ry

m
od

el
s

pr
od

uc
in

g
an

an
is

ot
ro

pi
c

m
od

ul
at

io
n

of
th

e
pr

im
or

di
al

cu
rv

at
ur

e
po

w
er

sp
ec

tru
m

fin
di

ng
th

at
th

e
di

po
la

rm
od

ul
at

io
n

in
th

e
C

M
B

te
m

pe
ra

tu
re

fie
ld

in
du

ce
d

by
a

C
D

M
is

oc
ur

va
tu

re
pe

rtu
rb

at
io

n
is

no
t

pr
ef

er
re

d
at

a
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

le
ve

l.
W

e
al

so
es

ta
bl

is
h

tig
ht

co
ns

tra
in

ts
on

a
po

ss
ib

le
qu

ad
ru

po
la

rm
od

ul
at

io
n

of
th

e
cu

rv
at

ur
e

pe
rtu

rb
at

io
n.

Th
es

e
re

su
lts

ar
e

co
ns

is
te

nt
w

ith
th

e
Pl

an
ck

20
13

an
al

ys
is

ba
se

d
on

th
e

no
m

in
al

m
is

si
on

da
ta

an
d

fu
rth

er
co

ns
tra

in
sl

ow
-r

ol
ls

in
gl

e-
fie

ld
in

fla
tio

na
ry

m
od

el
s,

as
ex

pe
ct

ed
fr

om
th

e
in

cr
ea

se
d

pr
ec

is
io

n
of

Pl
an

ck
da

ta
us

in
g

th
e

fu
ll

se
to

fo
bs

er
va

tio
ns

.

K
ey

w
or

ds
.C

os
m

ol
og

y:
th

eo
ry

–
ea

rly
U

ni
ve

rs
e

–
in

fla
tio

n

arXiv:1502.02114v2  [astro-ph.CO]  14 Sep 2017



Details of cosmic inflation:

• The discovery of PBHs would change our fundamental understanding of the Universe and 

Inflation (··a > 0)

a ∼ eN≃60 ∼ 1026

∼ 10−35s Age of the Universe
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reheating
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V(ϕ)
scalar field

·ϕ2 ≪ V(ϕ) and ··ϕ ≪ 3H ·ϕ

Equations of motion: H2 =
1

3M2
p ( 1

2
·ϕ2 + V(ϕ)) and ··ϕ + 3H ·ϕ + V′￼(ϕ) = 0 .

During inflation: H ≃ const . ⟶ a ∼ eHt

Inflation is assumed to be driven by a scalar field  slowly rolling down its potential.ϕ

⇔
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16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.

credit: Seong Chan Park
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THERE ARE DEGENERACIES BETWEEN MODELS…
HOW TO BREAK THE DEGENERACIES BETWEEN THESE MODELS? REHEATING?!



REHEATING AFTER INFLATION:

WITH APPLICATION TO MODIFIED GRAVITY



‣ Reheating is a transition era between the end of inflation and the beginning of the 
radiation era during which the energy stored in the inflaton is converted to a plasma 
of relativistic particles. 


‣ Although there are NO direct cosmological observables that are traceable this period 
of reheating, there are several reheating models have been proposed including 
perturbative decay of oscillating inflaton field at the end of inflation, and non-
perturbative processes such as parametric resonance decay, and instant preheating. 


‣ Depending upon the model, duration and final temperature of the reheating, as well 
as its equation of state, directly linked to inflationary observables if we approximate 
reheating by a constant EoS.


‣ Reheating can help to break degeneracies between inflation models that otherwise 
overlap in their predictions of ns and r.
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inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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ak

aend
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ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (28)

In terms of e-folding,

Nth =
1
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✓
⇢end
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◆
. (29)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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The energy density at the end of inflation is obtained from
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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The energy density at the end of inflation is obtained from
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where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

1We find V = 3
2H

2 � 1
2 �̇

2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain

⇢e↵ =

 
1 +

�̇
2

6
2H

2 � �̇2 � 24⇠̇H3
+

12⇠̇H3

3
2H

2 � 1
2 �̇

2 � 12⇠̇H3

!
V

=

2

41 + 1
6(1��1)

2✏��1(1+2✏��2)
� 1

+
1

1
�1

⇣
1� 2✏��1(1+2✏��2)

6

⌘
� 1

3

5V =

 
1 +

1
6

2✏+�1(5�2✏+�2)
� 1

!
V = (1 + �e↵)V

where we used 
2
�̇
2
/H

2 = 2✏ � �1(1 + 2✏ � �2); �1 = 42
⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.

5

Inverse case in which the second term in Eq. (18) dominates over the first one can also be
possible
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such that
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V 2
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However, we consider the first case in this work.
By using Eq. (3), we can rewrite Eq. (6) as
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Now, we can combine Eqs. (6) and (26) as follows by assuming the definition of an e↵ective
equation of state, pe↵ = !e↵⇢e↵,
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When K = 0, the last equation becomes !e↵ = 2✏/3� 1 where ✏ ⌘ �Ḣ/H
2.

3 Calculating Nth and Tth in terms of !th.

Although the physics of reheating is highly uncertain and unconstrained, this phase can
in principle be characterised by an e↵ective equation of state(EoS) parameter !th which is
defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (28) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by
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The energy density at the end of inflation is obtained from
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
=

ak

aend

aend

ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (28)

In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (29)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.

5

Inverse case in which the second term in Eq. (18) dominates over the first one can also be
possible

Q =
V�

V
+

4

3

4
⇠�V ) Q =

4

3

4
⇠�V , (24)

such that

⇠�|�=�end
� 3

44
V�

V 2

����
�=�end

. (25)

However, we consider the first case in this work.
By using Eq. (3), we can rewrite Eq. (6) as

⇢̇e↵

⇢e↵
= 2H

 
a
2
Ḣ �K

a2H2 +K

!
. (26)

Now, we can combine Eqs. (6) and (26) as follows by assuming the definition of an e↵ective
equation of state, pe↵ = !e↵⇢e↵,

!e↵ = �1� 2

3

 
a
2
Ḣ �K

a2H2 +K

!
. (27)

When K = 0, the last equation becomes !e↵ = 2✏/3� 1 where ✏ ⌘ �Ḣ/H
2.

3 Calculating Nth and Tth in terms of !th.

Although the physics of reheating is highly uncertain and unconstrained, this phase can
in principle be characterised by an e↵ective equation of state(EoS) parameter !th which is
defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
=

ak

aend

aend

ath
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aeq

aeqHeq

a0H0

Hk

Heq
, (28)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (28) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (29)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (30)

4

REHEATING CONSTRAINTS TO INFLATIONARY MODELS:

inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
=

ak

aend

aend

ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (28)

In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (29)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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However, we consider the first case in this work.
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When K = 0, the last equation becomes !e↵ = 2✏/3� 1 where ✏ ⌘ �Ḣ/H
2.
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considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
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inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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aend
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ath

ath
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aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (28)
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
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6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a
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The energy density at the end of inflation is obtained from
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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Inverse case in which the second term in Eq. (18) dominates over the first one can also be
possible
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such that
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However, we consider the first case in this work.
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When K = 0, the last equation becomes !e↵ = 2✏/3� 1 where ✏ ⌘ �Ḣ/H
2.

3 Calculating Nth and Tth in terms of !th.

Although the physics of reheating is highly uncertain and unconstrained, this phase can
in principle be characterised by an e↵ective equation of state(EoS) parameter !th which is
defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (28) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by
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4

REHEATING CONSTRAINTS TO INFLATIONARY MODELS:

‣ The energy density at the end of inflation can relate to that of at the end of 
reheating if the effective EoS is assumed to be constant.  



inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
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ak

aend

aend

ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end
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✓
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. (28)

In terms of e-folding,
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⇢end
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
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parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
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The energy density at the end of inflation is obtained from
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
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the change in scale factor during reheating is easily related to the change in the energy density.
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The energy density at the end of inflation is obtained from
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where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
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where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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2H

2 � 1
2 �̇

2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain
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6
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!
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1
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2✏+�1(5�2✏+�2)
� 1

!
V = (1 + �e↵)V

where we used 
2
�̇
2
/H

2 = 2✏ � �1(1 + 2✏ � �2); �1 = 42
⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.

5

Inverse case in which the second term in Eq. (18) dominates over the first one can also be
possible

Q =
V�

V
+

4

3

4
⇠�V ) Q =

4

3

4
⇠�V , (24)

such that

⇠�|�=�end
� 3

44
V�

V 2

����
�=�end

. (25)

However, we consider the first case in this work.
By using Eq. (3), we can rewrite Eq. (6) as

⇢̇e↵

⇢e↵
= 2H

 
a
2
Ḣ �K

a2H2 +K

!
. (26)

Now, we can combine Eqs. (6) and (26) as follows by assuming the definition of an e↵ective
equation of state, pe↵ = !e↵⇢e↵,

!e↵ = �1� 2

3

 
a
2
Ḣ �K

a2H2 +K

!
. (27)

When K = 0, the last equation becomes !e↵ = 2✏/3� 1 where ✏ ⌘ �Ḣ/H
2.

3 Calculating Nth and Tth in terms of !th.

Although the physics of reheating is highly uncertain and unconstrained, this phase can
in principle be characterised by an e↵ective equation of state(EoS) parameter !th which is
defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
=

ak

aend

aend

ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (28)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (28) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (29)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (30)

4

In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (31)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (32)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (33)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

By substituting Eq. (32) into Eq. (31), we obtain

Nth =
1

3(1 + !th)
ln


(1 + �e↵)

Vend

⇢th

�
(34)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,

Tth = T0

✓
43

11gs,th

◆ 1
3 a0

aeq

aeq

ath
. (36)

The first ratio a0/aeq in Eq. (36) can easily be obtained from Eq. (28) as

a0

aeq
=

a0Hk

k
e
�Nke

�Nthe
�NRD , (37)

while second ratio equals to NRD. The reheating temperature, therefore, becomes

Tth =

✓
43

11gs,th

◆ 1
3
✓
a0T0

k

◆
Hke

�Nke
�Nth . (38)

1We find V = 3
2H

2 � 1
2 �̇

2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain
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where we used 
2
�̇
2
/H

2 = 2✏ � �1(1 + 2✏ � �2); �1 = 42
⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.
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By substituting Eq. (30) into Eq. (29), we obtain

Nth =
1

3(1 + !th)
ln


(1 + �e↵)

Vend

⇢th

�
(32)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (33)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,

Tth = T0

✓
43

11gs,th

◆ 1
3 a0

aeq

aeq

ath
. (34)

The first ratio a0/aeq in Eq. (34) can easily be obtained from Eq. (26) as

a0

aeq
=

a0Hk

k
e
�Nke

�Nthe
�NRD , (35)

while second ratio equals to NRD. The reheating temperature, therefore, becomes

Tth =

✓
43

11gs,th

◆ 1
3
✓
a0T0

k

◆
Hke

�Nke
�Nth . (36)

Combining Eq. (32) and Eq. (33) we find

Nth =
4

3!th � 1

2

4ln
✓

k

a0T0

◆
+

1

3
ln

✓
11gs,th
43

◆
+

1

4
ln

✓
30(1 + �e↵)

⇡2gth

◆
+ ln

0

@V

1
4
end

Hk

1

A+Nk

3

5 , (37)

where note that an argument of the third term must be positive such that �e↵ > �1 at the end
of inflation. Then using Eq. (32) together with Eq. (33), the reheating temperature is,

Tth =


30(1 + �e↵)

⇡2gth
Vend

� 1
4

exp


�3

4
(1 + !th)Nth

�
. (38)

As we can see from the last two equations, the quantities that we are interest are calculated
during the phase of inflation. Assuming fiducial value gth = gs,th ' 102 and using Planck’s pivot
scale of k = 0.05Mpc�1 [3], we can simplify the last equation as,2

Nth =
4

1� 3!th

2

460.77� 1

4
ln

✓
3(1 + �e↵)

10⇡2

◆
� ln

0

@V

1
4
end

Hk

1

A�Nk

3

5 . (39)

Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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‣ The energy density at the end of inflation can relate to that of at the end of 
reheating if the effective EoS is assumed to be constant.  

REHEATING CONSTRAINTS TO INFLATIONARY MODELS:

defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as

k

a0H0
=

ak

aend

aend

ath

ath

aeq

aeqHeq

a0H0

Hk

Heq
, (26)

where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as

ln
k

a0H0
= �Nk �Nth �NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (27)

where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by

⇢end

⇢th
=

✓
aend

ath

◆�3(1+!th)

. (28)

In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (29)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

1We find V = 3
2H

2 � 1
2 �̇

2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain
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1
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where we used 
2
�̇
2
/H

2 = 2✏ � �1(1 + 2✏ � �2); �1 = 42
⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.
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In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (31)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (32)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (33)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

By substituting Eq. (32) into Eq. (31), we obtain

Nth =
1

3(1 + !th)
ln


(1 + �e↵)

Vend

⇢th

�
(34)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,

Tth = T0

✓
43

11gs,th

◆ 1
3 a0

aeq

aeq

ath
. (36)

The first ratio a0/aeq in Eq. (36) can easily be obtained from Eq. (28) as

a0

aeq
=

a0Hk

k
e
�Nke

�Nthe
�NRD , (37)

while second ratio equals to NRD. The reheating temperature, therefore, becomes

Tth =

✓
43

11gs,th

◆ 1
3
✓
a0T0

k

◆
Hke

�Nke
�Nth . (38)

1We find V = 3
2H

2 � 1
2 �̇

2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain
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⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
1 + 1

3/✏�1

⌘
V which is well know result in standard case.
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In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (31)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (32)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (33)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

By substituting Eq. (32) into Eq. (31), we obtain

Nth =
1

3(1 + !th)
ln


(1 + �e↵)

Vend

⇢th

�
(34)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,

Tth = T0

✓
43

11gs,th

◆ 1
3 a0

aeq

aeq

ath
. (36)

The first ratio a0/aeq in Eq. (36) can easily be obtained from Eq. (28) as

a0

aeq
=

a0Hk

k
e
�Nke

�Nthe
�NRD , (37)

while second ratio equals to NRD. The reheating temperature, therefore, becomes

Tth =

✓
43
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◆ 1
3
✓
a0T0

k

◆
Hke

�Nke
�Nth . (38)

1We find V = 3
2H
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2 � 12⇠̇H3 from Eq. (3) when K = 0. Substituting it into Eq. (7), we obtain
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⇠̇H and �2 = ⇠̈/(⇠̇H) [17]. When �1 = 0 such that

Gauss-Bonnet term is absent, we obtain ⇢e↵ =
⇣
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V which is well know result in standard case.
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In terms of e-folding,

Nth =
1

3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (31)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (32)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (33)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

By substituting Eq. (32) into Eq. (31), we obtain

Nth =
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3(1 + !th)
ln


(1 + �e↵)

Vend

⇢th

�
(34)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,

Tth = T0
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. (36)

The first ratio a0/aeq in Eq. (36) can easily be obtained from Eq. (28) as

a0
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a0Hk

k
e
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while second ratio equals to NRD. The reheating temperature, therefore, becomes
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Gauss-Bonnet term is absent, we obtain ⇢e↵ =
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In terms of e-folding,

Nth =
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3(1 + !th)
ln

✓
⇢end

⇢th

◆
. (31)

The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (32)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
1

6
2✏+�1(5�2✏+�2)

� 1
, (33)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].

By substituting Eq. (32) into Eq. (31), we obtain

Nth =
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3(1 + !th)
ln


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The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by
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⇡
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30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,
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The first ratio a0/aeq in Eq. (36) can easily be obtained from Eq. (28) as
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while second ratio equals to NRD. The reheating temperature, therefore, becomes
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the thermalisation by
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where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production
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temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,
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where note that an argument of the third term must be positive such that �e↵ > �1 at the end
of inflation. Then using Eq. (32) together with Eq. (33), the reheating temperature is,
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As we can see from the last two equations, the quantities that we are interest are calculated
during the phase of inflation. Assuming fiducial value gth = gs,th ' 102 and using Planck’s pivot
scale of k = 0.05Mpc�1 [3], we can simplify the last equation as,2

Nth =
4

1� 3!th

2

460.77� 1

4
ln

✓
3(1 + �e↵)

10⇡2

◆
� ln

0

@V

1
4
end

Hk

1

A�Nk

3

5 . (39)

Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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Combining Eq. (34) and Eq. (35) we find
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where note that an argument of the third term must be positive such that �e↵ > �1 at the end
of inflation. Then using Eq. (34) together with Eq. (35), the reheating temperature is,
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As we can see from the last two equations, the quantities that we are interest are calculated
during the phase of inflation. Assuming fiducial value gth = gs,th ' 102 and using Planck’s pivot
scale of k = 0.05Mpc�1 [3], we can simplify the last equation as,2
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Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

4 Reheating Phase Diagram

4.1 Model 1

The potential and Gauss-Bonnet couplings that we use for the further investigation is chosen
as follows,

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

n
. (42)

Figure 1: Numerical solutions of Eqs. (3)–(5) (Left) and of Eq. (18) (Right) for the model given
in Eq. (42) with n = 2. The potential parameter is set to V0 = 0.5 ⇥ 10�12 while coupling
parameter takes values including ⇠0 = 0(black), ⇠0 = 3 ⇥ 106(red), and ⇠ = 3 ⇥ 107(blue) for
both figures. In right figure, solid lines correspond to the left label, V�/V , while dotted and
dashed once correspond to right, 44⇠�V/3, and top, Q, labels, respectively.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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The energy density is ρend = (1 + λ)Vend, with the ratio
λ = (3/ε0 − 1)−1 of kinetic energy to potential energy.
The duration,

Nre = [3(1 + wre)]
−1 ln (ρend/ρre) , (7)

of reheating determines the dilution of the energy den-
sity. Here for simplicity we assume wre is a constant.
The final energy density determines the reheating tem-
perature through ρre = (π2/30)greT 4

re, with gre being the
effective number of relativistic species upon thermaliza-
tion. The subsequent expansion is mainly driven by hot
radiation, except for very recently non-relativistic mat-
ter and dark energy. Although it remains a possiblity
before BBN at z > 109, for simplicity we assume that no
immense entropy production take place after Tre. Under
this assumption, the reheating entropy is preserved in the
CMB and neutrino background today, which leads to the
relation,

gs,reT
3
re =

(

a0
are

)3 (

2T 3
0 + 6 ·

7

8
T 3
ν0

)

, (8)

with the present CMB temperature T0 = 2.725 K, the
neutrino temperature Tν0 = (4/11)1/3T0, and the effec-
tive number of light species for entropy gs,re at reheat-
ing. We therefore relate the reheating temperature to the
present CMB temperature through,

Tre

T0
=

(

43

11gs,re

)1/3 a0
aeq

aeq
are

. (9)

Combining Eq. (7), Eq. (9), and other relations lead to
a second equation relating the various e-folds,
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4
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4
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30
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1

4
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ρend
T 4
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+
1

3
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43
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aeq
a0

−NRD. (10)

We now combine Eq. (6) and Eq. (10) and

Nre =
4

1− 3wre

[

−Nk − ln
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a0T0
−

1

4
ln
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−
1

3
ln

11gs,re
43

+
1

4
ln

π2rAs

6
−

α

8
ln

r

16ε0
−

ln(1 + λ)

4

]

.

(11)

The required duration NRD of radiation domination and
the reheating temperature Tre can then be obtained. We
clarify that in Eq. (11) we compute the required value
of r = −8α(ns − 1)/(2 + α) for given α. However, the
results are essentially unchanged if we simply set r " 0.2.
It is worth noting that Eq. (11) has only logarithmic

dependence on ε0, gre, and gs,re, so it suffices to take
fiducial values ε0 = 1 and gre = gs,re = 100. The expres-
sion is not affected by the precise values of r and As, as

the dependence on these quantities is only logarithmic.
Nevertheless, the expression depends linearly on ns − 1
through Nk, and is sensitive to wre.
Numerical results. In Fig. 2, we apply the results above
to compute Nre and Tre as functions of ns − 1. We study
potentials with power-law indexes α = 2/3, 1, 2, 4. More-
over, we focus on effective reheating equation-of-state pa-
rameters wre ≥ −1/3 (as required if inflation has ended).
As discussed above, a matter-like wre = 0 is favored for
canonical reheating, but wre > 1/3 is disfavored from
model building. Still, for illustration, we will show re-
sults even for w > 1/3.
Our results indicate that the quadratic model α = 2

implies a prolonged reheating epoch for the central value
ns " 0.96 and canonical reheating (wre = 0). A num-
ber Nre " 30 of e-folds is required in this case, and
Tre " 106 GeV. A scalar tilt bluer than that, though,
requires smaller Nre and allows for higher reheating
temperature. For m2φ2 inflation and canonical reheat-
ing, we approximate the numerical results by a relation
log10

(

Tre/106GeV
)

" 2000 (ns − 0.96) between the re-
heat temperature Tre and the scalar spectral index ns. If
a reheat temperature considerably above the electroweak
scale is desired, then ns will have to be larger than its
central value. For example, if reheating was nearly in-
stantaneous and set Tre " 1016 GeV, as may be re-
quired by GUT-scale baryogenesis models, then m2φ2

inflation with canonical reheating requires ns " 0.965.
(Note here that this ns corresponds to the pivot scale
k = 0.05 Mpc−1 used by Planck. The value inferred for
ns increases to roughly ns " 0.967 for the WMAP pivot
scale k = 0.002 Mpc−1.)
For models with smaller power-law indexes (e.g. α =

2/3, 1), canonical reheating is too efficient in diluting
the energy density if ns falls within its 1σ error range.
A reheat temperature above even the BBN temperature
requires wre < 0. Thus, unless ns turns out to be above
the current 1σ upper limit, axion-monodromy models re-
quire some exotic mechanism of reheating, beyond that
in the canonical scenario. On the other hand, models
with larger power-law indexes (e.g. α = 3, 4) require
wre > 1/3 (dilution of energy density faster than that
that occurs with the radiation-dominated phase) and
thus also pose a challenge for reheating models, unless
ns is near the lower limit of the current 2σ range. Our
results also indicate that instantaneous reheating is disfa-
vored by current measurements except for α = 2 ∼ 3. To-
gether, these arguments (and the results shown in Fig. 2)
tend to favor the simplestm2φ2 models over other power-
law models.
Recently, Ref. [8] proposed that future measurements

of ns − 1 and r with high precision will serve as a non-
trivial consistency check of the potential shape. Their
method of determining the power-law index α does not
rely on good knowledge of the inflationary e-folds Nk,
and is independent of the reheating physics. Here our

defined by the e↵ective pressure-to-energy-density ratio, the number of e-folding Nth which is
considered as time frame from the end of inflation until the start of radiation dominance, and a
thermalisation temperature Tth.

The EoS parameter should be in the range of [�1/3, 1/3] because the inflation comes to an
end when the EoS parameter equals to �1/3 and the radiation domination begins when the EoS
parameter equals to 1/3. However, it is possible to achieve EoS parameter equals to �1 and
1 when potential and kinetic energy dominates, respectively. Hence one can consider broader
range of EoS parameter, [�1, 1].

The comoving Hubble scale akHk = k at the horizon crossing time can be related to that of
the present time as
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where a0, ak, aend, ath, and aeq denote the scale factor at present, horizon crossing, end of
inflation, end of reheating, and matter and radiation equality. By taking logarithm from both
sides, we can rewrite Eq. (26) as
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where Nk ⌘ aend/ak, Nth ⌘ ath/aend, and NRD ⌘ aeq/ath. If the EoS parameter is constant,
the change in scale factor during reheating is easily related to the change in the energy density.
Hence, using ⇢ ⇠ a

�3(1+!), the reheating epoch is described by
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The energy density at the end of inflation is obtained from

⇢end = (1 + �e↵)Vend , (30)

where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as

�e↵ =
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6
2✏+�1(5�2✏+�2)

� 1
, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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where �e↵ is the ratio of kinetic energy to potential energy plus that of Gauss-Bonnet term to
potential energy and is obtained 1 , at the end of inflation, as
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, (31)

where ✏, �1, and �2 are defined in Eq. (13) and when the Gauss-Bonnet term is absent, �1 = 0,
the resulting equation is consistent with [18].
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The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (35)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,
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where gth is the number of relativistic species upon thermalisation.
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where note that an argument of the third term must be positive such that �e↵ > �1 at the end
of inflation. Then using Eq. (32) together with Eq. (33), the reheating temperature is,
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As we can see from the last two equations, the quantities that we are interest are calculated
during the phase of inflation. Assuming fiducial value gth = gs,th ' 102 and using Planck’s pivot
scale of k = 0.05Mpc�1 [3], we can simplify the last equation as,2
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Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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‣ Assuming the entropy is preserved, no immense entropy production take place after the end of 
reheating.
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],

S =

Z
d
4
x
p
�g
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By substituting Eq. (30) into Eq. (29), we obtain
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Vend

⇢th

�
(32)

The reheating temperature Tth is a temperature of the thermalisation when the transition
from reheating to radiation occurs. It is, therefore, determined through the energy density of
the thermalisation by

⇢th =
⇡
2

30
gthT

4
th , (33)

where gth is the number of relativistic species upon thermalisation.
Making a standard assumption that entropy is preserved, no immense entropy production

take place, after the end of reheating. Under this assumption, one can relate the reheating
temperature to the temperature today by taking into account the changing number of helicity
state in the radiation gas as a function of temperature,
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The first ratio a0/aeq in Eq. (34) can easily be obtained from Eq. (26) as
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while second ratio equals to NRD. The reheating temperature, therefore, becomes
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where note that an argument of the third term must be positive such that �e↵ > �1 at the end
of inflation. Then using Eq. (32) together with Eq. (33), the reheating temperature is,
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⇡2gth
Vend
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�
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As we can see from the last two equations, the quantities that we are interest are calculated
during the phase of inflation. Assuming fiducial value gth = gs,th ' 102 and using Planck’s pivot
scale of k = 0.05Mpc�1 [3], we can simplify the last equation as,2
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Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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Notice that the last three terms depend on the potential as well as the Gauss-Bonnet coupling
functions.

2We set gs,th = gth, 1Mpc = 3.0857⇥ 1024cm, T0 = 2.725K where 1K = (0.23cm)�1 and a0 = 1.
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REHEATING AFTER INFLATION:

WITH APPLICATION TO MODIFIED GRAVITY



L2 = G2(ϕ, X)
L3 = G3(ϕ, X) □ ϕ

L4 = G4(ϕ, X)R+G4,X [( □ ϕ)2 − (∇μ ∇νϕ) (∇μ ∇νϕ)]
L5 = G5(ϕ, X)Gμν (∇μ ∇νϕ) −

1
6

G5,X [(□ϕ)3 − 3 □ ϕ (∇μ ∇νϕ) (∇μ ∇νϕ) + 2 (∇μ ∇αϕ) (∇α ∇βϕ) (∇β ∇μϕ)]

where X = − ∇μϕ∇μϕ/2

Generalized Galileon Theory: S = ∫ d4x −g (L2 + L3 + L4 + L5)
[G. Horndeski, “Second order scalar-tensor field equations in a 4D spacetime”]; 

C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, PRD 84, 064039 (2011); 
T. Kobayashi, M. Yamaguchi and J. Yokoyama, PTP 126, 511 (2011); 

X. Gao, T. Kobayashi, M. Shiraishi, M. Yamaguchi, J. Yokoyama and S. Yokoyama, PTEP 2013, 053E03 (2013);

Ezquiaga and Zumalacárregui Dark Energy and Gravitational-Wave Astronomy

FIGURE 3 | Modified gravity roadmap summarizing the possible extensions of GR described in section 2. The main gravitational wave (GW) test of each theory is

highlighted. For details in the different tests see the discussion in section 5 (GW speed and dispersion), section 6 (GW damping), and section 7 (GW oscillations).

Theories constrained by the GW speed and GW oscillations can also be tested with GW damping and GW dispersion, respectively. Note in addition that many

theories fall under different categories of this classification (see text in section 2.1).

where G is Newton’s constant and Sm denotes the action of
matter, universally and minimally coupled to the metric gµν .
Variation of the action (1) with respect to the metric leads to
Einstein’s field equations

Gµν ≡ Rµν −
1
2
Rgµν = 8πGTµν , (2)

where Rµν is the Ricci tensor, R ≡ gµνRµν the Ricci scalar
and Tµν = −2√−g

δSm
δgµν is the matter energy-momentum tensor.

Einstein’s equations can be used to obtain solutions for the
space-time (gµν) given the matter content (Tµν) in any physical
situation, including cosmological solutions relevant to study dark
energy.

The structure of gravitational theories is severely restricted
and several results can be used to prove the uniqueness of General
Relativity under quite broad assumptions. Weinberg’s theorems
restrict possible infrared (low energy) interactions of massless,
Lorentz invariant particles, which for spin-2 lead unavoidably to
the equivalence principle (Weinberg, 1964) and the derivation

of Einstein’s equations (Weinberg, 1965)1. At the classical level,
the results of Lovelock imply that the Einstein-Hilbert action is
unique in 4D (Lovelock, 1971, 1972).

According to the above results, alternative theories of gravity
can be classified into those that

• Break the fundamental assumptions.
• Include additional fields.
• Make the graviton massive.

Note that those descriptions are not exclusive, and many theories
fall within several categories. For instance: bimetric gravity has
an additional field (tensor) and contains a massive graviton,
Einstein-Aether is both Lorentz-violating and includes a vector
field, TeVeS has a scalar in addition to a vector, and many extra-
dimensional models can be described in terms of additional fields
in certain limits. Also, when referring to massive gravitons, we
will be considering only classical spin-2 fields.

1In addition to GR, there is another theory for massless, spin-2 fields in 4D,
Unimodular Gravity, which is invariant under diffeomorphisms preserving the 4D
volume element (van der Bij et al., 1982).
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by choosing a certain combinations of  functions, one can construct 

a broad spectrum of cosmological models describing cosmic inflation (and dark energy).
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X. Gao, T. Kobayashi, M. Shiraishi, M. Yamaguchi, J. Yokoyama and S. Yokoyama, PTEP 2013, 053E03 (2013);

by choosing a certain combinations of  functions, one can construct 

a broad spectrum of cosmological models describing cosmic inflation (and dark energy).
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FIGURE 3 | Modified gravity roadmap summarizing the possible extensions of GR described in section 2. The main gravitational wave (GW) test of each theory is

highlighted. For details in the different tests see the discussion in section 5 (GW speed and dispersion), section 6 (GW damping), and section 7 (GW oscillations).

Theories constrained by the GW speed and GW oscillations can also be tested with GW damping and GW dispersion, respectively. Note in addition that many

theories fall under different categories of this classification (see text in section 2.1).

where G is Newton’s constant and Sm denotes the action of
matter, universally and minimally coupled to the metric gµν .
Variation of the action (1) with respect to the metric leads to
Einstein’s field equations

Gµν ≡ Rµν −
1
2
Rgµν = 8πGTµν , (2)

where Rµν is the Ricci tensor, R ≡ gµνRµν the Ricci scalar
and Tµν = −2√−g

δSm
δgµν is the matter energy-momentum tensor.

Einstein’s equations can be used to obtain solutions for the
space-time (gµν) given the matter content (Tµν) in any physical
situation, including cosmological solutions relevant to study dark
energy.

The structure of gravitational theories is severely restricted
and several results can be used to prove the uniqueness of General
Relativity under quite broad assumptions. Weinberg’s theorems
restrict possible infrared (low energy) interactions of massless,
Lorentz invariant particles, which for spin-2 lead unavoidably to
the equivalence principle (Weinberg, 1964) and the derivation

of Einstein’s equations (Weinberg, 1965)1. At the classical level,
the results of Lovelock imply that the Einstein-Hilbert action is
unique in 4D (Lovelock, 1971, 1972).

According to the above results, alternative theories of gravity
can be classified into those that

• Break the fundamental assumptions.
• Include additional fields.
• Make the graviton massive.

Note that those descriptions are not exclusive, and many theories
fall within several categories. For instance: bimetric gravity has
an additional field (tensor) and contains a massive graviton,
Einstein-Aether is both Lorentz-violating and includes a vector
field, TeVeS has a scalar in addition to a vector, and many extra-
dimensional models can be described in terms of additional fields
in certain limits. Also, when referring to massive gravitons, we
will be considering only classical spin-2 fields.

1In addition to GR, there is another theory for massless, spin-2 fields in 4D,
Unimodular Gravity, which is invariant under diffeomorphisms preserving the 4D
volume element (van der Bij et al., 1982).
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G2(ϕ, X) = X − V(ϕ) , G3(ϕ, X) =
α

M3
ξ(ϕ)X , G4 =

M2
pl

2
, G5(ϕ) =

β
2M2

ϕ

G. T,  Eur.Phys.J.C 79 (2019) 11, 920,  Chen-Hsu Chien, Seoktae Koh, G. T, Eur.Phys.J.C 82 (2022) 3, 268

The Horndeski theory, which is equivalent to the generalized Galileon theory!
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The spectral index of the scalar perturbation at the time of horizon crossing cT k = aH becomes

nS � 1 =
lnPS

ln k

����
cT k=aH

= 3� 2µS '
2⌘V � 6✏V
1 +A

. (56)

The tensor-to-scalar ratio is

r =
PT

PS

'
16

1 +A
✏V , (57)

It is worth noting that observable quantities nS , nT , and r are suppressed by a factor of 1 + A. The similar

suppression were discussed in Refs. [28–31]. However, what is new in our case is that these quantities are

suppressed by an addition factor of (1 + 1/�) in the A � 1 limit because we have A ⌘ �3c1(1 + 1/�)H2.

The suppression is, therefore, mainly due to the presence of the derivative self-interaction and the non-minimal

derivative coupling to gravity.

IV. OBSERVATIONAL CONSTRAINTS ON THE EXPLICIT MODEL

In this section, using Eqs. (38), (56), and (57), we present our results for the observational constraint on

natural inflation [38]. To be consistent with other related works [28–31, 33, 36, 37], we set c1 = �1/M2 and

c3 = �1 throughout this section. In order for both the derivative self-interaction and the non-minimal derivative

couplings to have appreciable e↵ects, we only consider |A| � 1 case, i.e., the high-friction limit H2
� M

2.

The scalar-field potential for natural inflation is given by [38]

V (�) = ⇤4


1 + cos

✓
�

f

◆�
, (58)

where ⇤ and f are constants having dimension of mass. Since the potential form is given, the shape of the

coupling function ⇠(�) is determined with a help of Eqs. (16) and (17). In Fig. 1, we plot inflaton potential

V (�) and the coupling functions ⇠(�) for di↵erent values of the �, where the values increases from right to left

and, in plotting ⇠(�), we set M = f⇤.

ξ(ϕ)

V(ϕ)

0 5 10 15
-1

0

1

2

3

ϕ

FIG. 1: Numerical illustration of the inflaton potential V (�) (black) with f = ⇡/ and ⇤ = 1/ and the coupling

function ⇠(�) (blue) for di↵erent values of �; namely, � = 0.1, 0.5, 1 and 10 for solid, dashed, dot-dashed and

dotted lines, respectively.

The slow-roll parameters obtained from Eq. (19) as

✏1 =
sin2(�/f)

2↵ [1 + cos(�/f)]3
, ✏2 = �

1

2↵ [1 + cos(�/f)]
, ✏3 = �

1

↵ [1 + cos(�/f)]2
, (59)

ϕ
γ ≡

αξH ·ϕ
βMH2

∼ 𝒪(1) ,



Calculating  and  after inflation:Nre Tre
If , the  at the end of inflation is related to that of reheating  :ωre ≈ const. ρend ρre

T4
re = ( 30

π2gre ) V(ϕe)e−3(1+ωre)Nre .

Nre =
4

1 − 3ωre [−Nk − ln
k

a0T0
−

1
4

ln
30

π2gre
−

1
3

ln
11gs,re

43
−

1
4

ln V(ϕe) +
1
2

ln (2π2M2
pr𝒫S)] .

inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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L2 = G2(ϕ, X)
L3 = −G3(ϕ, X) □ ϕ

L4 = G4(ϕ, X)R+G4,X [( □ ϕ)2 − (∇μ ∇νϕ) (∇μ ∇νϕ)]
L5 = G5(ϕ, X)Gμν (∇μ ∇νϕ) −

1
6

G5,X [(□ϕ)3 − 3 □ ϕ (∇μ ∇νϕ) (∇μ ∇νϕ) + 2 (∇μ ∇αϕ) (∇α ∇βϕ) (∇β ∇μϕ)]

where X ≡ −
1
2

∇μϕ∇μϕ , □ ϕ ≡ ∇μ ∇μϕ , Gi,X ≡
dGi

dX
, Gμν ≡ Rμν −

1
2

gμνR

Generalized Galileon Theory: S = ∫ d4x −g (L2 + L3 + L4 + L5)
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by choosing a certain combinations of  functions, one can construct 

a broad spectrum of cosmological models describing cosmic inflation (and dark energy).
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FIGURE 3 | Modified gravity roadmap summarizing the possible extensions of GR described in section 2. The main gravitational wave (GW) test of each theory is

highlighted. For details in the different tests see the discussion in section 5 (GW speed and dispersion), section 6 (GW damping), and section 7 (GW oscillations).

Theories constrained by the GW speed and GW oscillations can also be tested with GW damping and GW dispersion, respectively. Note in addition that many

theories fall under different categories of this classification (see text in section 2.1).

where G is Newton’s constant and Sm denotes the action of
matter, universally and minimally coupled to the metric gµν .
Variation of the action (1) with respect to the metric leads to
Einstein’s field equations

Gµν ≡ Rµν −
1
2
Rgµν = 8πGTµν , (2)

where Rµν is the Ricci tensor, R ≡ gµνRµν the Ricci scalar
and Tµν = −2√−g

δSm
δgµν is the matter energy-momentum tensor.

Einstein’s equations can be used to obtain solutions for the
space-time (gµν) given the matter content (Tµν) in any physical
situation, including cosmological solutions relevant to study dark
energy.

The structure of gravitational theories is severely restricted
and several results can be used to prove the uniqueness of General
Relativity under quite broad assumptions. Weinberg’s theorems
restrict possible infrared (low energy) interactions of massless,
Lorentz invariant particles, which for spin-2 lead unavoidably to
the equivalence principle (Weinberg, 1964) and the derivation

of Einstein’s equations (Weinberg, 1965)1. At the classical level,
the results of Lovelock imply that the Einstein-Hilbert action is
unique in 4D (Lovelock, 1971, 1972).

According to the above results, alternative theories of gravity
can be classified into those that

• Break the fundamental assumptions.
• Include additional fields.
• Make the graviton massive.

Note that those descriptions are not exclusive, and many theories
fall within several categories. For instance: bimetric gravity has
an additional field (tensor) and contains a massive graviton,
Einstein-Aether is both Lorentz-violating and includes a vector
field, TeVeS has a scalar in addition to a vector, and many extra-
dimensional models can be described in terms of additional fields
in certain limits. Also, when referring to massive gravitons, we
will be considering only classical spin-2 fields.

1In addition to GR, there is another theory for massless, spin-2 fields in 4D,
Unimodular Gravity, which is invariant under diffeomorphisms preserving the 4D
volume element (van der Bij et al., 1982).
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an additional field (tensor) and contains a massive graviton,
Einstein-Aether is both Lorentz-violating and includes a vector
field, TeVeS has a scalar in addition to a vector, and many extra-
dimensional models can be described in terms of additional fields
in certain limits. Also, when referring to massive gravitons, we
will be considering only classical spin-2 fields.

1In addition to GR, there is another theory for massless, spin-2 fields in 4D,
Unimodular Gravity, which is invariant under diffeomorphisms preserving the 4D
volume element (van der Bij et al., 1982).
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The Horndeski theory and the generalized Galileon theory are equivalent!

The choice:

,


,

,


.

G2(ϕ, X) = 8ξ(4)X2 (3 − ln X)
G3(ϕ, X) = 4ξ(3)X (7 − ln X)
G4(ϕ, X) = 4ξ(2)X (2 − ln X)
G5(ϕ, X) = − 4ξ(1) ln X

The Gauss-Bonnet term: 

ξ(ϕ)(R2 + 4RμνRμν + RμνρσRμνρσ)

L2 = G2(ϕ, X)
L3 = −G3(ϕ, X) □ ϕ

L4 = G4(ϕ, X)R+G4,X [( □ ϕ)2 − (∇μ ∇νϕ) (∇μ ∇νϕ)]
L5 = G5(ϕ, X)Gμν (∇μ ∇νϕ) −

1
6

G5,X [(□ϕ)3 − 3 □ ϕ (∇μ ∇νϕ) (∇μ ∇νϕ) + 2 (∇μ ∇αϕ) (∇α ∇βϕ) (∇β ∇μϕ)]

where X ≡ −
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∇μϕ∇μϕ , □ ϕ ≡ ∇μ ∇μϕ , Gi,X ≡
dGi

dX
, Gμν ≡ Rμν −

1
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gμνR
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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In the early universe, approaching the Planck era, it is quite natural to 
consider corrections like this. 

In light of both the current and future observations, extended models of 
inflation seem to be more promising!

S. Koh, B. H. Lee, W. Lee and GT, PRD 90, 063527 (2014)  
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �
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The amount of the inflationary expansion is encoded in the number of e-folds, N ,
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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2Ḣ �H

2
⌘i

, (4)

�̈+ 3H�̇+ V� + 12⇠�H
2
⇣
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crossing are calculated in Ref. [30] as

PS '
csc2 ⌫S⇡

⇡z
2
S�

2(1� ⌫S)

a
2

c
3
S |⌧ |

2

✓
cSk|⌧ |

2

◆3�2⌫S

, (15)

PT ' 8
csc2 ⌫T⇡

⇡z
2
T�

2(1� ⌫T )

a
2

c
3
T |⌧ |

2

✓
cTk|⌧ |

2

◆3�2⌫T

, (16)
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Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �

is considered to be slowly rolling down its potential minimum, we define the slow-roll parameters,

✏ ⌘ �
Ḣ
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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because of the background EoM in flat FRW universe: 

Observable quantities are obtained as, 

where
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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2Ḣ �H

2
⌘i

, (4)

�̈+ 3H�̇+ V� + 12⇠�H
2
⇣
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �

is considered to be slowly rolling down its potential minimum, we define the slow-roll parameters,
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The amount of the inflationary expansion is encoded in the number of e-folds, N ,

N =

Z tend

t⇤

Hdt '

Z �⇤

�end


2

Q
d� , (14)

where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
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where � = �1/(1 � �1). The observable quantities such as the spectral indices of the scalar
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
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The amount of the inflationary expansion is encoded in the number of e-folds, N ,
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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Here, it is important to have:

because of the background EoM in flat FRW universe: 

Observable quantities are obtained as, 
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as
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where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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The standard models of inflation discussed in Refs. [7,8] predict a slightly red-tilted primor-
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tensor perturbations could have a blue tilt nT > 0 [43,44]. Therefore, any evidence of the blue-
tilted tensor mode spectrum would support non-standard models of inflation. In this section, we
consider two types of inflation models with a GB term based on their predictions for the nT ; a
positive and a negative.1 The models that predict the inflationary tensor power spectrum with
a red tilt (nT < 0) are classified as the ”Model-I ” whereas those that predict the blue-tilted
inflationary tensor power spectrum are grouped as the ”Model-II ”. In order for the tensor mode
spectrum to have a red-tilt (blue-tilt), the slow-roll parameter ✏ in Eq. (20) has to be negative
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Figure 2: We plot Eqs. (66)–(67) in the first row. The relation between the potential and the
coupling function is plotted in Fig. 2(c). Fig. 2(d) shows the comparison between the numerical
solution (solid) of Eqs. (3)–(5) and the slow-roll solution (dashed) obtained in Eq. (68).

Previously, in p = 1 case, we were able to see an inverse relation between the potentials
and the Gauss-Bonnet coupling functions if c2 = 0. In p = 2 case, on the other hand, such
inverse relation can be hold in an infinitely large region �1 < � < 1, everywhere except a
finite interval O(5) near � = 0 in Fig. 2(c). By substituting Eqs. (66)–(67) with � = 2 into
Eqs. (8)–(10), we obtain the following slow-roll solution for the scalar-field,

�(N) = �
r

q

82
arcsinh

 
Np
↵
�

s
82

q
C

!
, (68)

where C is an arbitrary constant. We compare the slow-roll solution obtained in Eq. (68) with
the numerical solution of Eqs. (3)–(5) in Fig. 2(d). As is seen in Fig. 2(d) that the slow-roll
solution fits well with the numerical solution during inflationary period. In the ↵ ! 0 limit,
Eqs. (66)–(67) can be reduce to

V (�) ⇠ tanh2
✓r

8

q
�

◆
, ⇠(�) ⇠ � 3c1

4
p
↵4

csch

✓r
8

q
�

◆
. (69)

In Fig. 3 we compare the predictions of spectral index and tensor-to-scalar for three di↵erent
models; namely, the chaotic inflation with dilatonlike coupling [9], the chaotic inflation with an
inverse power-law coupling [11] which we also discussed in Subsection 3.2.1, and the inflation
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)
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(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
1

4
[tanh (�) +

p
µ sech (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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model is recovered when ↵ = 0. The predictions of Model-II are plotted in solid line with
0 < µ  50 where the big blue dot corresponds to µ = 0. By using the observational best-fit
value for nS = 0.9655±0.0062 [8], we get the upper limit of the tensor-to-scalar ratio for Model-
II to be r ' 0.0032 for N⇤ = 50 and r ' 0.0022 for N⇤ = 60 which are nearly insensitive on µ.
Further details of the each inflation model can be found in corresponding references [29–32]
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Figure 1: The marginalized 68% and 95% confidence level contours for nS and r0.002 from
Planck2015 TT+lowP and the theoretical predictions of models in Eqs. (21) and (23). The red
line indicates Model-I with fixed ↵ = 0 but varying n. The parameter ↵ then grows from zero to
unity along each n = 1, n = 2, and n = 4 lines. For Model-II, the black solid line, the values of
µ also increase from larger blue end-point to smaller one; where 10�4

< µ  50. The e-folding
number is set to N⇤ = 60 along each line.

4 Primordial Gravitational Waves induced by the blue-tilted
and red-tiled tensor spectra

We discussed two types of GB inflation models in the previous section. In this section, we
calculate the energy spectrum of the pGW background for selected models; Model-I and Model-
II. We start the present section by reviewing a formalism to calculate the energy spectrum of
the pGW background. The pGWs are described by a tensor part of the metric fluctuations in
the linearized flat FRW metric of the form

ds
2 = a

2(⌧)
⇥
�d⌧

2 + (�ij + hij)dx
i
dx

j
⇤
, (25)

where hij is symmetric under the exchange of indices, and satisfies the transverse-traceless
condition @ih

ij = 0 , �ijhij = 0. The tensor perturbation can be expanded in Fourier space as

hij(⌧,x) =
X

�

Z
dk

(2⇡)3/2
✏
�
ijh�,k(⌧)e

ikx
, (26)

where � denotes each polarization state of the tensor perturbations and ✏
�
ij is the symmetric

polarization tensor, which satisfies the transverse-traceless condition and is normalized by the

relation
P

i,j ✏
�
ij

⇣
✏
�0
ij

⌘⇤
= 2���

0
. The GW energy density ⇢GW is defined by ⇢GW = �T

0
0 and

can be written as

⇢GW =
M

2
p

4

Z
d ln k

✓
k

a

◆2
k
3

⇡2

X

�

hh
†
�, kh�, ki. (27)

6

0 ≤ α ≤ 1

0 < μ ≤ 𝒪(10)

nT < 0, nT > 0.

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
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inflaton potential and the coupling function for Model-I are given by

V (�) =
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where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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In addition, and



By assuming, 
constant equation-of-state during reheating,
no entropy production after the end of reheating

we calculate the duration of reheating and the thermalization temperature at the 
end of reheating,

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6

6� 2✏� �1(5� 2✏+ �2)

����
�=�end

. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,

Nth =
4

3!th � 1


ln

✓
k

a0T0

◆
+

1

3
ln

✓
11g⇤s
43

◆
+

1

4
ln

✓
30�end

⇡2g⇤

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
. (46)

With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as

Nth =
4

3!th � 1


�60.0085 +

1

4
ln

✓
3�end

100⇡2

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
, (47)

where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),

Tth =

✓
30�endVend

⇡2g⇤

◆ 1
4

e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,

Model-I : Vend =
V0

4


n
2

2
(1� ↵)

�n
2

, �end = �
3n

4↵(n+ 1)� 2n
, (49)

Model-II : Vend =
(µ+ x)2

4 (1 + x2)
, (50)

�end =
6µ3/2

�
x
2 + 1

�2 �p
µ+ x

�

6µ3/2 (x5 + 4x3 + 3x) + 6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µ (5x3 + 2x) + 2x2 � 1

,
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where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6
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. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,
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With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as
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where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),

Tth =

✓
30�endVend

⇡2g⇤

◆ 1
4

e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,
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ωth = const,

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],
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The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
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where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
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where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra
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The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.
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or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,
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where

α ≡
4
3

V0ξ0

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
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µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =
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(N2
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.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by
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where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
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where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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In our numerical study, we consider following models:



is seen in Figure 4(c). The black and red vertical dashed lines at ↵ = 0 and 1/4, and 1/3
correspond to the same !th = 0 dashed lines in Figures 4(a) and 4(b), respectively. There is no
vertical red line in Figure 5(b) because the red point in Figure 4(b) locates at the boundary of
the 1� region.
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(a) 0  ↵ < 1/4 along the black dots. (b) 0  ↵ < 1/3 along the black dots. (c) 0  ↵ < 2/5 along the black dots.

Figure 4: The ns dependence on Nth and Tth for Model-I with V0 = 0.5 ⇥ 10�12. The solid
black and red lines correspond to !th = �1/3, the dashed lines to !th = 0, the dot-dashed
lines to !th = 1/4, and the dotted lines to !th = 1. The black dots reaching up to the red one
indicate the instantaneous reheating process with Nth = 0 and the increasing of ↵. The arrow
indicates that N⇤ increases along the line. The green shaded region corresponds to the current
1� range nS = 0.9655 ± 0.0062 from Planck data [8] while the yellow band assumes the future
CMB experiments with sensitivity ±10�3 [41, 42], using the same central nS = 0.9655 value as
Planck. The horizontal blue lines at TEW = 102 GeV (dotted) and Tth = 106 GeV (dashed)
indicate the EW scale and the lower bound from pGW detection by DECIGO, respectively.

(a) (b)

Figure 5: The reheating temperature Tth as a function of ↵ where !th = 0. The vertical black
and red dashed lines correspond to !th = 0 dashed lines in Figure 4. The black dots reaching
up to the red one indicate the instantaneous reheating with Nth = 0. The background shared
regions, as well as the horizontal lines, are as for Figure 4.

When ↵ = 0, the reheating temperature peaks at Tth ⇠ 1015 GeV in each three cases; see the
bigger black intersecting points in Figure 4 and 5. When ↵ 6= 0, the maximum Tth is denoted
by the red points, but the exact values depend on the range of ↵ for each n. Previously from
Eq. (22) and Figure 1, we learned that the range 0  ↵  1 is favored by inflation. However,
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as
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,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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ωth = − 1/3; 0; 1/4 and 1.From solid to dotted:

Numerical results:



Nth

ωth

for reheating, the positivity of �end in Eq. (47) puts another constraint on the model parameter.
Therefore, a new range for ↵ is found to be 0  ↵ < n/(2n + 2). The parameter space of ↵
therefore reduces for n > 0. Thus, we emphasize that reheating can be used as an additional
constraint to the models of inflation.

If the temperature of reheating is determined by the detection of the pGW, the equation-
of-state, as well as the duration of reheating, can be read o↵ from Figure 4 by matching both
upper and bottom panels with the same nS value. In other words, we can estimate !th and Nth

by using nS value if Tth is known. For example, let us assume that the scalar spectral index
and the temperature of reheating are determined by the current and the future experiments
such as Planck data [8] and DECIGO [15] to be nS = 0.9655 and Tth = 106 GeV, respectively.
With these values, both !th and Nth for Model-I with n = 1 and n = 2 can be computed as
follows. In order to compare cases with and without the GB term, let us first consider ↵ = 0
case. From the bottom panels of Figure 4, by matching nS = 0.9655 with Tth = 106 GeV,
we obtain !th ' �0.1550 for n = 1 and !th ' 0.4012 for n = 2. Using these !th values with
nS = 0.9655 in the upper panel, we obtain Nth = 32.452 for n = 1 and Nth = 19.816 for n = 2
cases. Similarly for ↵ 6= 0, we obtain (n,!th, Nth) = (1, 0.2092, 32.3801) when ↵ ' 0.2499 and
(n,!th, Nth) = (2, 0.9280, 19.6133) when ↵ ' 0.3333, respectively. To compare with ↵ = 0 case,
the duration of reheating seems to be slightly decreasing in the presence of the GB term. In
Figure 6, by using nS = 0.9655 and Tth = 106 GeV, we plot !th dependence of Nth for Model-I
with n = 1 and n = 2. Figure 6 confirms that reheating lasts shorter in the presence of the GB
term where than that of its absence. This result robust and holds even for changes of nS and
Tth values as long as they are observationally favored. It is also worth noting from Figure 4 and
6 that Model-I with n = 1 (n=2) favors the equation-of-state smaller (larger) than 1/3.

Model-I with n=1
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(a) From black to red lines 0  ↵ < 1/4. (b) From black to red lines 0  ↵ < 1/3.

Figure 6: Nth as a function of !th when nS = 0.9655 and Tth = 106 GeV. From the black to red
lines ↵ value increases. If ↵ increases, Nth decreases.

The similar result is also obtained for Model-II. Although wide range of µ is acceptable,
the reliable once must give �end > 0. Thus, we plot �end as a function of µ in Figure 9, see
appendix B for further details. After obtaining the reliable range of µ, we plot Figure 7. Together
with Figure 8(a) where !th is assumed, it shows that reheating temperature is increasing as µ

increases. The result is valid for other constant values of !th. In contrast to Model-I, we find
from Figure 8(b) that the duration of reheating is longer in the presence of the GB term for
Model-II.
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for reheating, the positivity of �end in Eq. (47) puts another constraint on the model parameter.
Therefore, a new range for ↵ is found to be 0  ↵ < n/(2n + 2). The parameter space of ↵
therefore reduces for n > 0. Thus, we emphasize that reheating can be used as an additional
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If the temperature of reheating is determined by the detection of the pGW, the equation-
of-state, as well as the duration of reheating, can be read o↵ from Figure 4 by matching both
upper and bottom panels with the same nS value. In other words, we can estimate !th and Nth

by using nS value if Tth is known. For example, let us assume that the scalar spectral index
and the temperature of reheating are determined by the current and the future experiments
such as Planck data [8] and DECIGO [15] to be nS = 0.9655 and Tth = 106 GeV, respectively.
With these values, both !th and Nth for Model-I with n = 1 and n = 2 can be computed as
follows. In order to compare cases with and without the GB term, let us first consider ↵ = 0
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with n = 1 and n = 2. Figure 6 confirms that reheating lasts shorter in the presence of the GB
term where than that of its absence. This result robust and holds even for changes of nS and
Tth values as long as they are observationally favored. It is also worth noting from Figure 4 and
6 that Model-I with n = 1 (n=2) favors the equation-of-state smaller (larger) than 1/3.
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For Tth=106 GeV and nS=0.9655:

Model-I: α ≡
4
3

V0ξ0

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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with

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6

6� 2✏� �1(5� 2✏+ �2)

����
�=�end

. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,

Nth =
4

3!th � 1


ln

✓
k

a0T0

◆
+

1

3
ln

✓
11g⇤s
43

◆
+

1

4
ln

✓
30�end

⇡2g⇤

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
. (46)

With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as

Nth =
4

3!th � 1


�60.0085 +

1

4
ln

✓
3�end

100⇡2

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
, (47)

where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),

Tth =

✓
30�endVend

⇡2g⇤

◆ 1
4

e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,

Model-I : Vend =
V0

4


n
2

2
(1� ↵)

�n
2

, �end = �
3n

4↵(n+ 1)� 2n
, (49)

Model-II : Vend =
(µ+ x)2

4 (1 + x2)
, (50)

�end =
6µ3/2

�
x
2 + 1

�2 �p
µ+ x

�

6µ3/2 (x5 + 4x3 + 3x) + 6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µ (5x3 + 2x) + 2x2 � 1

,
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0 ≤ α <
n

2n + 2
.0 ≤ α ≤ 1

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],
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where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
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> 0;

Numerical results:



Figure 7: The ns dependence on Nth and Tth for Model-II with V0 = 0.5 ⇥ 10�12. The solid
black and red lines correspond to !th = �1/3, the dashed lines to !th = 0, the dot-dashed
lines to !th = 1/4, and the dotted lines to !th = 1. The black dots reaching up to the red
one indicate the instantaneous reheating process with Nth = 0 and the increasing of µ between
10�4

 µ  0.3517. The arrow indicates that N⇤ increases along the line. The shaded regions,
as well as the horizontal lines, are as for Figure 4.
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Figure 8: (Left) The black and red dots respectively at (µ, Tth) = (10�4
, 1.27 ⇥ 1017GeV) and

(0.3517, 2.69⇥ 1019GeV) correspond to the maximum reheating temperatures for instantaneous
reheating. The vertical black and red dashed lines represent !th = 0 lines of Figure 7. The
shaded regions, as well as the horizontal lines, are as for Figure 4. (Right) From black to red µ

increases; 10�4
 µ  0.3517.

Our results therefore imply that the presence of the GB term during inflation significantly
enhances the thermalization temperature at the end of reheating. Moreover, in comparison to
the standard case, the presence of the GB term shortens the duration of reheating for Model-I,
but extends it for Model-II. Once reheating temperature is determined by the detection of pGW,
in light of the current or future observational data, other parameters including !th and Tth can
also be determined with a help of Figure 4 and 7.
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in light of the current or future observational data, other parameters including !th and Tth can
also be determined with a help of Figure 4 and 7.
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Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
1

4
[tanh (�) +

p
µ sech (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.

5

By defining a new variable x ⌘ sinh(�) in Eq. (61), we can write ✏(�end) = 1 as follows

p
µx

3 + µx
2 + 2

p
µx+ µ� 1 = 0 . (62)

This equation has a real solution of the form

x = �

p
µ

3

"
1 + (µ� 6)

✓
2

x1

◆ 1
3

+
1

µ

✓
2

x1

◆� 1
3

#
, (63)

where

x1 = 2µ3 + 9µ2
� 27µ+

p
27(4µ5 � 17µ4 + 14µ3 + 27µ2) . (64)

It is worth noting that x1 is positive for µ > 0. However, x is positive for 0 < µ < 1 and is
negative for µ > 1. When µ = 1, we have x = 0.

Solving sinh(�end) = x for �end, we find the inflaton field value at the end of inflation as

�end = �arcsinh

"
p
µ

3

 
1 + (µ� 6)

✓
2

x1

◆ 1
3

+
1

µ

✓
2

x1

◆� 1
3

!#
+ 2⇡ic1 . (65)

where c1 is an arbitrary constant. The potential energy at the end of inflation therefore becomes

Vend =
1

4

(µ+ x)2

1 + x2
, (66)

and �end gets

�end =
6µ3/2

�
x
2 + 1

�2 �p
µ+ x

�

6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µx (5x2 + 2) + 2x2 + 6µ3/2x (x4 + 4x2 + 3)� 1

. (67)

Since x is given in Eq. (63) as a function of µ, both Vend and �end are functions only of µ. As
we mentioned earlier, �end must be positive in order to yield Nth � 0. Thus, in Figure 9, we
plot the positive range of �end as a function of µ. We see that �end diverges around µ ' 0.3517.

Model-II
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Figure 9: The functional dependence of �end on µ from Eq. (67).
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Numerical results:
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