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OUTLINE

RW metric (CP + Weyl’s postulate)

Big Bang Model

Problems of Big Bang

Solutions for problems (Yamaguchi’s talk)

Predictions of Inflation (Gong’s talk)
Stochastic properties

Observables (Appleby’s talk)



COSMOLOGY

* General theory of Relativity (GR) : local theory (Gaussian i
normal coordinate), geometric theory of gravitation : Nao =Ko, =93& T

* 2nd order nonlinear partial DEs : difficult to solve and no
general solutions

—

* Few specific solutions for GR
» Static (stationary) local solutions : BHs

» Static global solution : Einstein static univ (assume spatial hom +
iso : CP , need A to satisfy EFEs) g 1

* Dynamical sols : de Sitter, RW metric (assume CP+Weyl’s
postulate) : cosmic (global) time + comoving spatial element +
scale factor (information for expansion)

* Cosmology : Solve EFEs by using RW type metric G, +
Thermodymanics T}, (adiabaticity) A



@ a given time t; (Einstein’s static Univ) :
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* Cosmological principle : 3D space is o null geodesic @ t,
hom + iso at a given cosmic time, t;
(Killing vectors) = same as Einstein’s
static Univ
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* Weyl’s postulate : Spacelike
hypersurfaces = surfaces of
simultaneity w.r.t the t

* Time varying speed of light ( VSL in
the expanding Univ, out of scope)

* Refer : Islam p.37-45, Ryder p.344-
355, Hubson p.355-367, Narlikar p.94-
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symmetric, a(t) scale factor. Friedmann (1922, 1924), Robertson (1935, 1936) Walker (1937),

Lemaitre (1931)
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Einstein's cosmic model of 1931 revisited:
an analysis and translation of a forgotten
model of the universe

C. O’Raifeartaigh®

tzung der physikalisch-mathematischen Klasse vom 8. Februar 1917

Kosmologische Betrachtungen zur allgemeinen
Relativitatstheorie.

Von A. EiNsteiN.

and B. McCann

The Friedmann—Einstein universe is a model of the universe published by Albert Einstein in 1931.

(11 The model is of historic significance as the first scientific publication in which Einstein embraced
the possibility of a cosmos of time-varying radius.

Description

Interpreting Edwin Hubble's discovery of a linear relation between the redshifts of the galaxies and
their radial distancel2! as evidence for an expanding universe, Einstein abandoned his earlier static
model of the universe and embraced the dynamic cosmology of Alexander Friedmann. Removing the
cosmological constant term from the Friedmann equations on the grounds that it was both
unsatisfactory and unnecessary, Einstein arrived at a model of a universe that expands and then
contracts, a model that was later denoted the Friedmann—Einstein model of the universe.[31(4]

Einstein’s 1917 Static Model of the Universe: A Centennial Review

Cormac O’Raifeartaigh,® Michael O’Keeffe,> Werner Nahm® and Simon Mitton®

Einstein's blackboard

In May 1931, Einstein chose the Friedmann—Einstein universe as the topic of his 2nd Rhodes lecture at
Oxford University. A blackboard used by Einstein during the lecture, now known as Einstein's
Blackboard, has been preserved at the Museum of the History of Science, Oxford. It has been
suggested!(5! that the source of the numerical errors in the Friedmann—Einstein model can be

discerned on Einstein's blackboard.
See also
= Einstein—de Sitter universe
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BIG BANG
MODEL

Einstein’s Field equation : FLRW
equations

Solutions for FLRW eqs : Big Bang
Models

BB = Decelerated expanding Univ with
ordinary materials (radiation + baryon)

FLRW Univ assumes CP but it can’t
explain it : horizon problem

BB shows that early Univ was made of
many causally disconnected regions of
space : horizon problem




PROBLEMS OF BIG BANG UNIVERSE

* Flatness problem (= oldness problem, * Horizon problem (CMB isotropy)
fine-tuning) : even closer to 1 in the past
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REASON FOR BB PROBLEMS
AND SOLUTIONS

* Both problems are due to the increasement of Hubble radius (i = 2
) during decelerating expansion

* Require shrinking Hubble radius ( 1) accelerating expansion , ii)
larger c , 1i1) bouncing (Novello & Bergliaffa 08 or Brandenberger &
Peter 17) ) at early Univ

* (Refer Yamaguchi’s talk for similar approaches in different areas)

* Early Univ = before hot BB
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HOW MUCH :
INFLATION DO tuen oo comnouss 7T
WE NEED?

* At least, we need the larger
Hubble radius at the
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PREDICTIONS OF

INFLATION
(REFER GONG’S TALK
FOR DETAILS)

* Inflation models provide a testable

prediction of PS of primordial
fluctuations (CMB anisotropy & LSS)

* Cosmology starts to predict
observational results

* Pioneering works by Starobinsky
(79), Guth (81), Linde (82), Albrecht
& Steinhardt (82)

* Single scalar field slow-roll inflation



SINGLE SCALAR FIELD SLOW-ROLL
INFLATION

, e Slow-roll conditions &
* Equations parameters
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REHEATING

Need to terminate inflation

Slow-roll parameters attain values of order
unity (breaking slow-roll conditions)

Potential around its minimum becomes
harmonic oscillations

Propose coupling of inflaton to other fluids
(put by hand , need to be solved)

How? (parametric resonant, etc...)



o Metric perturbation : gue = a®{n) (e + fe)

w perturbations {Newtonian gauge) : gog = —a” {1+ 2W[n. x]) . g = 0, g5 = a” (1 + 20[. x])

rye > "
o Tensor perturbations : gop = —a” g0 = 0,435 =

PRODUCTION e

If we « ¢k z {ie., the propagation direction of a GW along z-direction) and ¢ =

Wt by = ok where

SHER (k) + (e

DURING S (B

Prefer to use combinations ey F th, = A becanse these have helicity 42

Tensor quantum perturbations are Ganssian with power spectrum (PS) 2 Pyl &) oo (A, k) \‘
Dimensionless PS :
] — 1T r' 1
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PRODUC TI ON O F e Comoving curvature perturbation (or Lukash variable 80) :
SCLAR

@

P ERTURB ' TI ON S e Evolution eq for R (Mukhanov-Sasaki eq 85, 86 ) :
DURING e Scalar PS :
H? ) H?
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e Spectral index :

R + B—R' + kR =0 where 2z
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| ~Upl‘- k=aH




LINK TO
OBSERVATIONS

*Planck 2018 results. X : Constraints on inflation

TT,TE,EE+lowE+lensing

TT,TE,EE+lowE+lensing
+BK15

TT,TE,EE+lowE+lensing
+BK15+BAO
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ng and r at k = 0.002Mpc~! from Planck alone and in combination with
BK15 or BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint
68 % and 95 % CL regions assume dng/dInk = 0.

Cosmological model = Parameter  Planck TT,TE,EE
ACDM+r +lowEB+lensing

Planck TT,TE ,EE Planck TT, TE ,EE
+lowE+lensing+BK15  +lowE+lensing+BK15+BAO

<0.11
<0.10
0.9659 + 0.0041

< 0.061 < 0.063
< 0.056 <0.058
0.9651 + 0.0041 0.9668 + 0.0037

<0.16

<0.16
0.9647 + 0.0044
—0.0085 + 0.0073

+dny/dInk

< 0.067 < 0.068

< 0.065 < 0.066
0.9639 + 0.0044 0.9658 + 0.0040
—0.0069 + 0.0069 —0.0066 + 0.0070

k, : pivot scale 0.002 Mpc™! or 0.05 Mpc~! (Plnack)
Ag (Ar) : scalar (tensor) spectral amplitude
ng(k)(ny(k)) : scalar (tensor) spectral index

Dimensionless spectra including running of spectra indices (i.e

Ldfdnk)
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STOCHASTIC COSMOLOGICAL
PERTURBATIONS

* Cosmological perturbations statistics

* Set of DEs for §s with ICs (from spatial (scale) dependences : 6(17, ))
« Ex : Evolution eqs depend only on magnitude k : |X| not i O +kV.+30' =0,V + HV. — k¥ =0
¢ (k)

* IC from quantum origin = probability feature (random variables)

15
15+4R,

+ IC for CDM : 8,(k) =

 If probability distribution is Gaussian (all information in its variance = PS)

* Descriptive statistics (Due to signals from past light cone)



RANDOM FIELDS

A function G () : a random field (RF) with g a certain value

dFi(g1)

Probability distribution function p;(g;) = where F is a cumulative probability : F; (—o0) =

0, Fl (OO) - 1
In cosmology, G (X) is a perturbative quantity, such as § (x_))

Ensemble average = an expectation value of random field : < G (x—1)> >= | q 91p1(g1)dg, where Q
denotes ensemble

For a statistically homogeneous random field, ensemble average becomes independent of X : < G >

I, gr(g)dg



TWO-POINT CORRELATION FUNCTION

Probability of G (x;) and G (x,) being g; and g5 : p12(g1, g)d gy dg, : can be written as derivatibe of
distribution function of F;,

In general, p1,(g91,92) # P1(91)P2(92)

p12(91,92) = p1(91)p2(g,) : when realisations are independent (Poissonian random process)

Two-point correlation function (2-pt CF) : §(x1, x5) =< G(x1)G (x2) >= [, 9192 P12(91,92)d g1 dg>
One can generalize to N-point CFs

For a statistically homogeneous RF, 2-pt CF becomes & (x4, x,)=&(x; — x5)

Statistically isotropic : p;(g; ) = Pr1(gry) Where xp; = R(x,) for a rotation matrix R

If a RF is statistically hom + iso, then 2-pt CF becomes & (x4, x,)=&(x; — x,)= &(ry, ) : depends only on
the distance btw two points



e Observation : probe a realization in a finite V' = L”

Assuming statistical homogeneity :
e T is defined as a Fourier ser

.
2T

where
G, = /(ﬁ"‘x(f,'(:x)p‘"’ki""‘ , k= Tn

o

), then

J(k)ek* | G(k) = / d*xG(x]

Application of random fields to cosmology
are done in configuration space whereas cosmological perturbations are done in Fourier
e If (7(x) is a real field, then G(—k) = G*(k)

modes
Assume that FT of a RF is also a RF

ERGODIC THEOREM



e 2-pt CF for FT of (G(x) :

IYala AYakd: _ 13 13t i _‘—1kx zk’»x' } L. i i Lo i
(G(k)G( / d’x / d"x'(C x)G(x'))e Gaussianity implies statistical homogeneity

Expecation value and all the odd power correlators are vanishing
e Assuming statistical homogeneity i N N i
(G(k)) = (G(k1)G(k2)G(ks)) = - -

(:(i'(k:)(i‘*(k’]::' = /di /(f‘}\ Eq(x! —x)e” ik-x ik’ X’

All even order correlators can be written in terms of the second-order correlators (PS)

¢ Power spectrum (PS) = FT of the 2-pt CF

e If statistical isotropy is assumed, then
where = 0 and use g instead of G(x) due to statistical homogeneity

~(k) = 2w / dr r? &g(r) Tu e where p= cos(k - x)
0 J

0 .S
= 4 / dr r< &q(r)—————
Jo

GAUSSIAN RFS & POWER SPECTRUM



Theoretical prediction : P (k) , Observational measurement : & (r)
2-pt CF :

4’k
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Suppose none of quantities in the integrand of the above Eq is a stochastic variable and (- --)

& COSMIC
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where V' = L? : survey volume and use the fact that spatial integration is

L fi:})k Ei-ikn_km:l‘x
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= Onm

e Cosmic variance of PS

1
kL

1 3 -
PPy “ri. for square
r C(kL)/? where N = { s !

for sphere

ri = dk/k : resolution of the survey




e For non-Gaussian perturbations, odd-order correlatpors are non-zero

e Bispectrum Bg(ky, ko, k3) is defined by a F'T of a 3-point CF

(G(k1)G (ko) G(k3)) = (21)30) (ky + ko + k3) B (K1, ko, k3)

where the relation between bispectrum and reduced bispectrum Bg(Fkq, ko, k3) is given by
B (k1 k2, ks) = Ba(ka, k2, ks) [Pa(ky, k2) + Pa(ke, ks) + Po(k, ks)]

This formula can be obtained using following expansion (local type non-Gaussianity : square ‘\ ‘ O ‘\ |

of a Guassian RF is not Gaussian )

G(x) = Gg(x) + fnr (GE(x) — (GE(x))) + ... G AU S SIAN I

= Ga(x)+ far ('(f"?f;(x‘) - UF,) T

fnr = 2.5 £ 5.7 : Planck 16 I I

This is a primordial non-Gaussianity. Non-Gaussianity naturally arises in non-linear regime
of evolution




OBSERVABLES

(REFER APPLEBY’S
TALK FOR DETAILS)

“the devil is 111 the detail” look simple

inflaton 4
of(ry ke Z(z) 1K) 590

| S ———
link to Measurement Curvature perturbation S——
no evolution

(ﬁ’,‘f ) =0 : Quantum fluctuation — random distribution
ﬁf ﬁf) : measurements, X : CMB (T, E, B), LSS il &
By = (0. 0}, 01.) =0 : Gaussianity
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LSS AND CMB

(DETAILS IN THE
SECOND REVIEW)
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LARGE SCALE STRUCTURE
(MATTER POWER
SPECTRUM)

GHAHEY RF HPH

future work
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COSMIC MICROWAVE
BACKGROUND ANISOTROPY
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OBSERVATIONAL LIMI'TS

1AU = 1.5 X 10!!' m

Ipc = 3.26 lys

lly = 9.46 X 101° m
100Mpc = 3.08 X 10** m
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OBSERVATIONAL CHALLENGES
(

Theories can never
4 : be proved, only ‘_
" disproved | &

ObserveQU.liV e

Overemphasize on ’
small scale data




