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AdS/CFT correspondence (symmetry)

Classical SUGRA <=mmp | Super-CFT at the AdS boundary
on AdS space-time 1to 1 (in a strong coupling regime)
For example

lsometry of AdS; <«—— S50(2,4) ——> Conformal symmetry on R'?

Isometry of g% «—— SO(6) ———> R-symmetry of N=4 SUSY

Son—shell

_SCFT>

Zgravity = € “one to one map Zgauge = <e

What is the role of the extra dimension of a bulk geometry?




Two-point correlation function

The AdS metric becomes

dz? — dt? + di?

2 _
ds* = 5

zZ

A scalar field fluctuation in the AdS space (corresponding fluctuation in the dual CFT)

0= \/%—gau (\/__gg'uyau(b(za L f) ) T m2¢(27 (3 f)

Solution
o(z,x) = /d4x’D¢ (z,a:;O,a;') b0 (0, 2)

$0(0,z") with Bulk-to-boundary propagator
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Near the boundary ( z — 0 ),

the bulk-to-boundary propagator reduces to

PZA

(:IZ _ :U/)2A
which leads to the boundary-to-boundary propagator

lim ¢(z,z) = 2° /d4 r_90(0,2)

z—0 (CE )QA

Dy (z,x;O,x') R~

The boundary (on-shell) action of matter becomes

dew/d4 /d4 /(boOxgbo(Ox)

>2A

As a consequence, the two-point correlation function reads

0 0 1
) = Do (0,2') 8@50(0,:6)2 B (x — )24

(O(z)O(a'

which is exactly the two-point function expected in the CFT.



Comparing the two-point correlation function with the bulk scalar field

(O@)0(")) = —2 0 !

B 0o (0, z") Do (0, x) 2 (x — x')2A

(in the asymptotic region)
#(2,7) ~ go(z) 278 (L+--) + O@) 22 (1+--)

the radial coordinate dependence is associated with the scaling dimension of an operator.

Therefore, we can identify the bulk quantities with the boundary quantities
®o : coupling constant (or source) of the dual operator
@®  :dual operator

A  : conformal dimension of the dual operator

This is because of the scaling invariance

T — \T and Z — Az



If we further take into account the gravitational backreaction of the massive scalar field,

the inside geometry corresponding the IR region of the dual QFT is deviated from the

AdS geometry. The dual QFT is not conformal anymore and allows the nontrivial RG flow
of the dual QFT.

Son—shell — SCFT — /d4x¢0(9

In general, the scaling dimension is well defined only in a scale invariant theory. Then,

how can we connect the scale-dependent correlation functions to bulk solutions?

We expect that a coupling constant becomes scale-dependent for a nonconformal QFT.

However, the coefficients of the bulk solution are given by two integral constants

0] O
b= x (L+-- )+ -x (L+:-)

(@0 and () are two integral constants )

What are the scale-dependent coupling and vev of the operator?



Answering this question is important to understand IR physics along the RG flow.

For example)

It was known that QCD is asymptotically free. Therefore, QCD has a UV fixed point where a conformal
symmetry is restored. The conformal symmetry requires

<TM/J> =0

However, when QCD deforms by the gluon condensation, the trance anomaly appears at the one-loop
level

NCB)\

TN — 2D
< N> 87T )\2

(G with G =-TrF?

How can we describe such a deformation in the holographic setup?




RG flow in QFT

For CFT

- CFT has a vanishing beta-function Bcrr =0 (due to the scale symmetry)

- CFT is a dual of an AdS geometry (isometry of AdS space = conformal symmetry)

Deformation of UV CFT by an operagor with a conformal dimension A

SQFT = SCFT + /ddfﬁud_A)\O

where [ and )\ denote the RG scale and dimensionless coupling.

Under the RG (scale) transformation at the classical (tree) level, the coupling constant
and operator scale by

A— 94BN and O — p20.



Then, a classical beta-function becomes
O\
Bcl =
Jlog

— —(d— A

Then, we divide the operator into

-relevant (8, <0) for A <d

- marginal (8, =0) for A = d

- irrelevant (8, >0)for A > d

For the gluon condensation with A = d,

the gluon condensation is classically marginal

Be =0 and <TMM> =0



This is the story at the classical level. If we further consider quantum corrections, the
scaling behavior of the coupling constant and operator change.

Near the UV fixed point, the beta-function is corrected due to the quantum corrections
Br=Ba+ By =—(d—=A)A+ .

Even for a classically marginal operator with A = d, its beta-function becomes nontrivial

[ classically marginal operator] —> - marginally relevant (8, <0)
quantum - truly marginal (8, =0)
corrections - marginally irrelevant (3 > 0)
B

Bs >0

marginally irrelevant

UV fixed point

marginally relevant

Figure 1. The RG flows caused by marginally relevant and irrelevant operators.



On the QFT side, after an appropriate renormalization procedure, the renormalized
partition function is given by a functional of the coupling constants

Z = /ng e~ (SQrT+Set) _ e—F[wV(u),A(u);u]j

Here, we took into account the metric as a coupling (the method was also used to explain
the conformal anomaly in CFT).

Since the partition function must be independent of the cutoff scale, it should satisfy

o= &
dp
which leads to the RG equation (1) When the metric is scale invariant,
4 o the traditional RG equation occurs
0= ——+~*{T,.)+05.(0 r
=gt T+ 5 0) 0=, + 5 (0)
where
5 d\ » (2) The vev of operators are derived quantities
A= :
dlo
quap (3) For 9or'/ou = 0, we obtain the trace
(L) = ~ oy anomaly caused by the deformation, like the
1 o0 previous gluon condensation,
(0) = —=

VAR (T"u) ~ =B (0)



Holographic dual of a classically marginal operator

We take into account a 5-dimensional Einstein-scalar gravity theory
5= &PXyg (R -2A - —gMNa $ON b — lﬁqﬁ? i/ &'z 7 K
2/12 MVEN 2 R? K2 Jom ’
where the bulk scalar field is the dual of a deformation operator.

For a constant ¢, the geometric solution becomes an AdS space
R2
ds® = prl (dz + 0;;dz’ dCL"7>
which corresponds to the undeformed CFT.

If we further consider the gravitational backreaction of the scalar field, the CFT deforms by

the dual operator.

In the asymptotic region ( z = 0 ), the bulk scalar field has the following expansion

Qb:C1Z4_A(1—|—---)—|—c2zA(1_|_...)

with m2
A_2+\/4+ﬁ



From p=cz" 2 (1+ )+ 1+

m2
A=2+ 4[4+ o

- for m2 < 0, the deformation is relevant (A < 4)
- for m? =0 , the deformation is marginal (A = 4)

- for m? > 0 , the deformation is marginal (A > 4)

Noting that C1 and C2 are two integral constants,
- when we naively identify ¢1 with a coupling constant, the beta-function always vanishes
B=0

- the vev of the operator is not determined from the partition function.

We need to improve the holographic definition of the coupling constant and operator’s vev
in order to describe the RG flow correctly.



We begin with the foIIowing gravity theory

1 1
_ - 5 B L MN . 4
S = 2/<;2 P°X.\/g ( 20— 59 8M¢8N¢> i /aM dz\/7 K,

Then, the dual theory is a CFT deformed by a marginal operator.
We can investigate the gravity theory in two different ways.

- (1) Einstein equation (2"9-order differential equation)
using the following metric ansatz in the normal coordinate system
ds® = 62A(y)5uyda:“dx” + dy?

Einstein equations are 0 1o
0 = 24A° — ¢ + 4A,

0 = 124 + 24 A2 + ¢ + 4A,
0 = ¢+ 449,

3 4/6 — ¢12* | R
and the solution is given b F \/7 3
e T <4f+¢1z4/R4
R? YR
24(y) _ 17 B 177 d
TS \/1 06 B with z=Re ¥/

These are the second-order differential equations.

However, we need to the first-order differential equations to describe the RG flow.




- (2) Hamilton-Jacobi formalism (1st-order differential equation)

Since the RG equation is given by the first-order differential equation, the
Hamilton-Jacobi formulation is useful to describe the RG flow of the dual QFT.

After the ADM decomposition
ds?® = N2dy? + Yo (T, y)dat da” with Yur = €2A(y)5/u/-

the Einstein-scalar theory can be rewritten as

S = /d4xdy\/§ L,

with
1 1 .
L=— |[N(-RW + K,, K" — K? + 2\) + —¢*
s [N (R Kk~ K2 420) 4 50
where the extrinsic curvature is given by
1 Oy
K, =——"
9N Oy

and the intrinsic curvature of the boundary vanishes for a flat boundary
RW =0



The canonical momenta of the boundary metric and scalar field are defined

oS 1
e i v
0s 1
*T 96 2k2°

Then, the bulk action reexpresses as
= /d4xdy\/§ (Wu,ﬁ’“’ + W¢¢ — N?—[)

with the following Hamiltonian constraint

1 1 A
H = K2 (*y“pv”"ﬂwﬁpg — §7r2 - 57@) —— =0

Here, the Hamiltonian corresponds to a generator of the translation in the y-direction. All

solutions connected by this transformation are gauge-equivalent.

% This corresponds to the RG transformation of the dual QFT.




The variation of the on-shell bulk action reduces to the variation of the boundary action

0Sp = / d4xﬁ <7T/vu/57pw + 7T¢5¢) )
oM

which satisfies 1 6Sp 1 1 055
== and Ty = ————.
*T VA 89

T S J——
SRV o T
These two relations and the previous Hamiltonian constraint are equivalent to the Einstein

equations

According to the AdS/CFT correspondence, the above boundary action corresponds to the

generating functional of the dual QFT.

Z s e OB

Since the above boundary action suffers from the UV divergence,

we need to renormalize it by adding appropriate counterterms (holographic renormalization).




The marginal deformation does not generate additional UV divergence, so that only the

counter term renormalize the AdS geometry is required

1

— 4 .
Sct i 2/{/2 d TN/7Y ‘Cct with ﬁct = }—%

As a consequence, the renormalized boundary action (generating functional) is given by

Fh,ul/a ®; g] = Sp — S¢t.

Since the generating function must be independent of the UV cutoff,

it has to satisfy the following RG equation

0= \/_gz+7””< Tuw) + B85 {0)
with 96
By = Tlog 1
«n»::—j%gﬁ;-—(mmy—jgmwa£y
0) = 1or _ 1 0Ly

DT AT



Two prescriptions for the holographic RG flow

(1) In the normal coordinate system,

the scaling of the dual QFT is related to translation in the radial direction of the dual gravity.

On the QFT side, the scaling behavior of the coordinate and momentum is

r—e xzorpu—eu
At the boundary of the bulk geometry
ds* =y datdr”  with v = e24¥)5,,.
the bulk coordinate must transform

eA(:‘j) — 60 eA(g)

Therefore, we have to identify the radial coordinate with the RG scale of the dual QFT




(2) When the CFT deforms with a nontrivial beta-function,

the coupling constant becomes a function of the RG scale and the vev of the operator must

be derived from the generating functional.

To describe the scale dependence of the coupling constant,

we identify the value of the bulk field at the boundary with the strength of the coupling constant

For example,

¢:6124—A(1+...)+C2ZA(1+...)
classical quantum corrections

at the leading order, we obtain
1 oI

(0)= =55 ~eat-:

This is consistent with the identification (O) = co at the UV fixed point.



From the bulk solution of the Einstein-scalar gravity

. § 4\/6—¢1Z4/R4
PSR +77\/;10g <4\/6+ ¢1z4/R4> ’

2A(y) _ R? n2¢; 28

¢ 2V 96 RY

with 2z = Re ¥/E

1) For ¢ = 0, a pure AdS is a solution which corresponds to an undeformed CFT.

2) The massless bulk scalar field at the boundary is matched to the coupling constant of a
classically marginal operator.

3) The beta-function of a marginal operator with quantum corrections

for &~ A Bs <0 - marginally relevant (7 < 0)

o) Bs =0 -truly marginal (n=0)
By = :Il:

~ dlo
= Bs >0 - marginally irrelevant (7 > 0)




Gluon condensation in QCD

In a 4-dimensional space, QCD is asymptotically free (conformal at the UV fixed point)

For QCD, the condensations are usually associated with the spontaneous symmetry

breaking and responsible for the mass of hadrons

If there is a non-vainshing gluon condensation
(G) 7& 0 with G=-TrF?

QCD deforms by the condensation which gives rise to a new ground state.

The quantum correction at the one-loop level leads to the following trace anomaly

N,
() = 2 (6

where A = N.g%,, is the ‘t Hooft coupling.



Holographic dual of the gluon condensation

From the kinetic term of the Yang-Mills theory

1
/d‘lxﬁ Tr F?

49%M

SYM:_

we identify the bulk scalar field with the inverse of the Yang-Mills coupling or ‘t Hoot coupling

N
=

Then, the beta-function of Qb is related to that of the ‘t Hooft coupling

L _ Np
? = dlog 4 )2

From the previous gravity solution,

n =1 : marginally relevant (T*,) # 0

I
o

n : truly marginal (T*,) =0

n = —1 : marginally irrelevant (T*,) =0 By < 0

marginally relevant <Tu“> # 0

Figure 1. The RG flows caused by marginally relevant and irrelevant operators.



For 7 = 1, the asymptotic free theory at the UV fixed point flow into a new IR theory

which has a non-vanishing gluon condensation.

The holographic calculation allows the following beta-function and gluon condensate

¢1 1 ¢; 1

Bs = gipa ~ REm TO W),
¢1 1 —28
<G>:_2K32R5/F+O('u )

which rely on the RG scale.

Rewriting these result in terms of the ‘t Hooft coupling, we obtain
Bx ~ —A and (G) ~ —1/X in the UV region.

Since the ‘t Hooft coupling is dimensionless, its beta-function is at the tree level
pr=0

Therefore, 3, ~ —\ comes from the quantum correction



Varying the holographic generating functional with respect to the metric, we obtain the

following trace anomaly

# 1, ¢ 1

T™,) = — —
( l‘> 4Kk2RO 8 384Kk2R1T7 116

+O ().

Comparing the obtained holographic results, we finally find the following relation

N, _
one-loop higher-loop

- The one-loop result is the expected trace anomaly caused by the gluon condensation.

- The nonvanishing higher order correction can modify the one-loop trace anomaly.



Conclusion

- We discuss how to realize the RG flow in the holographic setup.

- By applying the holographic RG flow,

we reproduced the expected trace anomaly caused by the gluon condensation.

- Future works,
- Higher loop corrections
- RG flow caused by relevant deformations

- Nonperturbative IR physics after the RG flow
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