Holographic duals of M5-branes on an irregularly punctured sphere

Yein Lee

Kyung Hee University

In collaboration with Christopher Couzens, Hyojoong Kim, Nakwoo Kim (2204.13537)

CQUeST 2022 workshop on Cosmology and Quantum Space Time

Outline

- Holographic duals of M5-branes on a punctured sphere
- Our strategy : Toda system, Electrostatic reformulation
- Generalize the regular puncture
- Match to the dual field theory

Introduction : Class S theories, Argyres-Douglas theories, Spindles & Discs

(Bah, Bonetti, Minasian, Nardoni 2021)

Introduction

Class S theory (Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)

- 4d N=2 SCFTs
- Geometric engineered : 6d (2,0) theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Class S theory (Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)

- 4d N=2 SCFTs
- Geometric engineered : 6d (2,0) theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Argyres-Douglas theory (Argyres, Douglas 1995)

- 4d N=2 SCFTs
- Fractional scaling dimensions
- Intrinsically strongly coupled theory
- Non-Lagrangian theory, described by Young diagram and irregular puncture data

Class S theory (Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)

4d N=2 SCFTs

Riemann surface with regular punctures

- Geometric engineered : 6d (2,0) theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Argyres-Douglas theory

4d N=2 SCFTs

- Sphere with irregular punctures
- Fractional scaling dimensions
- Intrinsically strongly coupled theory
- Non-Lagrangian theory, described by Young diagram and irregular puncture data

(Argyres, Douglas 1995)

Punctures

- Singular solutions $\Phi(z)$ of Hitchin's equation on sphere
- Regular puncture : simple pole $\Phi(z) \sim \frac{1}{z}$
- Irregular puncture : higher order pole $\Phi(z) \sim \frac{1}{z^n}$, n > 1

- An irregular puncture of type I
- Type IV : A regular puncture and an irregular puncture of type I

(**D.** Xie 2012)

Punctures

- Singular solutions $\Phi(z)$ of Hitchin's equation on sphere
- Regular puncture : simple pole $\Phi(z) \sim \frac{1}{z}$
- Irregular puncture : higher order pole $\Phi(z) \sim \frac{1}{z^n}$, n > 1

- An irregular puncture of type I
- Type IV : A regular puncture and an irregular puncture of type I

Spindle & Disc

- Holographic dual of punctured sphere
- **Spindle** dual to sphere with 2 regular punctures

WCP¹_[n_{-},n_{\perp}]: two conical singularities

• Uplift : removed in M2, D3

still remain in D4, M5, D2 \rightarrow physical interpretation

Disc dual to sphere with a regular and a irregular punctures

conical singularity and physical singularity

Holographic duals of M5-branes on punctured sphere

$$AdS_5 \times \Sigma$$

$$ds_7^2 = \left(wP(w)\right)^{1/5} \left[4ds^2(AdS_5) + \frac{w}{f(w)}dw^2 + \frac{f(w)}{P(w)}dz^2 \right]$$

$$h_1(w) = w^2 - s_1, \quad h_2(w) = w^2, \quad P(w) = h_1(w)h_2(w), \quad f(w)$$

N=2 classification

• Embed into the classification of N=2 preserving AdS_5 solution of 11d supergravity

Toda system

- With extra U(1) isometry, $x_1 + ix_2 = re^{i\beta}$
- Can perform Bäcklund transformation

$$r^2 e^D = \rho^2$$
, $y = \rho \partial_\rho V(\rho, \eta) \equiv \dot{V}$, $\log r = \partial_\eta V(\rho, \eta) \equiv V'$

End up with the cylindrical Laplace equation

Laplace equa

• Boundary conditions : $\dot{V} = 0$ along $\eta = 0$

(Gaiotto, Maldacena 2009)

$$\Box_{(x_1,x_2)}D + \partial_y^2 e^D = 0$$

tion
$$\ddot{V} + \rho^2 V'' = 0$$

Line charge density : $\lambda(\eta) = y(\rho = 0, \eta)$

Generalize the regular puncture

Generalized line charge

$$\lambda = r_a \eta + m_a \qquad \begin{cases} r_{a-1} - r_a \equiv l_a \in \mathbb{Z} ,\\ Nm_a \equiv M_a \in \mathbb{Z} ,\\ Nn_a \equiv N_a \in \mathbb{Z} \end{cases}$$

Generalized Young diagram

[Holographic dictionaries]

$$\hat{k} = N_{f+1} - \hat{N}, \quad \hat{N} = \sum_{a=1}^{f} N_a l_a, \quad \hat{n}_a = N_a, \quad l_a^{\text{SCFT}} = l_a^{\text{SCFT}}$$

Generalized Young diagram

[Holographic dictionaries]

$$\hat{k} = N_{f+1} - \hat{N}, \quad \hat{N} = \sum_{a=1}^{f} N_a l_a, \quad \hat{n}_a = N_a, \quad l_a^{\text{SCFT}} = l_a^{\text{SCFT}}$$

Match to the dual field theory

Observables

• From the general line charge density, the central charge is

 $a = N^3$

Scaling dimensions of BPS probe M2-branes located at the kinks are

• The flavour central charges are

 k_{I}

$$\int_{0}^{n_{f+1}} \lambda(\eta)^2 \mathrm{d}\eta$$

$$\Delta(\mathcal{O}_a) = N\lambda(n_a)$$

$$F_a = 2N\lambda(n_a)$$

Central charge

• Gravity side computation, using the line charge density

$$a = \frac{N^3}{4} \int_0^{n_3} \lambda(\eta)^2 d\eta = \frac{N^3}{12n_3} \left[n_1^2(n_1 - n_3)^2 \right]$$

• For the $(I_{\hat{N},\hat{k}}, Y)$ theory,

$$a = a_{Y} + \frac{\hat{N}}{\hat{N} + \hat{k}} \frac{6I_{\rho Y} - \hat{N}(\hat{N}^{2} - 1)}{12} + a_{I_{\hat{N},\hat{k}}} \sim a_{I_{\hat{N},\hat{k}}} + \frac{\hat{N}}{\hat{N} + \hat{k}} \frac{6I_{\rho Y} - \hat{N}(\hat{N}^{2} - 1)}{12} + c_{I_{\hat{N},\hat{k}}} \sim a_{\text{leading}} = c_{\text{leading}} = \frac{N^{3}}{12n_{3}} \left[n_{1}^{2}(n_{1} - n_{3})^{2} n_{1}^{2} + n_{3}^{2} + n_{1}^{2} +$$

 $l^{2}l_{1}^{2} + n_{1}(n_{1}^{2} + n_{2}^{2} - 2n_{2}n_{3}) l_{1}l_{2} + n_{2}^{2}(n_{2} - n_{3})^{2}l_{2}^{2}$

- $\sim a_{\text{leading}} + \mathcal{O}(N^2)$
- $\sim c_{\text{leading}} + \mathcal{O}(N^2)$

 $l_1^2 + n_1(n_1^2 + n_2^2 - 2n_2n_3) l_1 l_2 + n_2^2(n_2 - n_3)^2 l_2^2$

Scaling dimensions

• Scaling dimensions of BPS probe M2-branes, located at the kinks

$$\Delta(\mathcal{O}_1) = n_1(l_1 + l_2) - \frac{n_1}{n_3}(n_1l_1 + n_2l_2)$$
$$\Delta(\mathcal{O}_2) = \left(1 - \frac{n_2}{n_3}\right)(n_1l_1 + n_2l_2)$$

Conformal dimensions of BPS operators, corresponding to a'th box of the Young diagram lacksquare

$$\Delta(\mathcal{O}_{a}) = i_{a} - \text{height}(i_{a}) \frac{\hat{N}}{\hat{k} + \hat{N}}$$
$$\Delta(\mathcal{O}_{1}) = n_{1}(l_{1} + l_{2}) - \frac{n_{1}}{n_{3}}(n_{1}l_{1} + n_{2}l_{2})$$
$$\Delta(\mathcal{O}_{2}) = n_{1}l_{1} + n_{2}l_{2} - \frac{n_{2}}{n_{3}}(n_{1}l_{1} + n_{2}l_{2})$$

Flavour central charge

• For the flavour groups, arising at the kinks

$$k_{F_1} = 2n_1(l_1 + l_2) - \frac{2n_1}{n_3}(n_1l_1 + n_2l_2) = 2\Delta$$
$$k_{F_2} = 2\left(1 - \frac{n_2}{n_3}\right)(n_1l_1 + n_2l_2) = 2\Delta(\mathcal{O}_2)$$

• For the a'th non-abelian gauge factor

$$k_{F_a} = 2$$

$$\frac{2n_1}{n_3}(n_1l_1 + n_2l_2) = 2\Delta(\mathcal{O}_1)$$

Conclusion

- 4d N=2 Argyles-Douglas theory, geometric engineered by wrapping M5-branes on the punctured sphere with a regular and a irregular puncture at the poles
- Holographic dual of the punctured sphere are the warped product of AdS_5 and disc in 7d $U(1)^2$ gauged supergravity
- Generalization to the arbitrary type of a regular puncture, using electrostatics
- Match the observables between supergravity and dual field theory
- Apply similar methods to N=1 theory with either spindle or disc solutions
- Four-dimensional orbifolds in 6d and 7d, dual to 1d or 2d SCFTs

Thank you