Holographic duals of M5-branes on an irregularly punctured sphere

Yein Lee
Kyung Hee University
In collaboration with Christopher Couzens, Hyojoong Kim, Nakwoo Kim (2204.13537)

CQUeST 2022 workshop on Cosmology and Quantum Space Time

Outline

- Introduction : Class S theories, Argyres-Douglas theories, Spindles \& Discs
- Holographic duals of M5-branes on a punctured sphere
(Bah, Bonetti, Minasian, Nardoni 2021)
- Our strategy : Toda system, Electrostatic reformulation
- Generalize the regular puncture
- Match to the dual field theory

Introduction

Class S theory (Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)

- 4d N=2 SCFTs
- Geometric engineered : 6d $(2,0)$ theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Class S theory (Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)

- 4d N=2 SCFTs
- Geometric engineered : 6d $(2,0)$ theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Argyres-Douglas theory (Argyres, Douglas 1995)

- 4d N=2 SCFTs
- Fractional scaling dimensions

- Intrinsically strongly coupled theory
- Non-Lagrangian theory, described by Young diagram and irregular puncture data

Class S theory

- 4d N=2 SCFTs Riemann surface with regular punctures
- Geometric engineered : 6d $(2,0)$ theory compactified on a Riemann surface
- Parent theory with A-type singularity : M5-branes stack
- Lagrangian theory, described by quiver diagram

Argyres-Douglas theory
 (Argyres, Douglas 1995)

- 4d N=2 SCFTs

Sphere with irregular punctures

- Fractional scaling dimensions

- Intrinsically strongly coupled theory
- Non-Lagrangian theory, described by Young diagram and irregular puncture data

Punctures

(D. Xie 2012)

- Singular solutions $\Phi(z)$ of Hitchin's equation on sphere
- Regular puncture : simple pole $\Phi(z) \sim \frac{1}{z}$
- Irregular puncture : higher order pole $\Phi(z) \sim \frac{1}{z^{n}}, n>1$
- An irregular puncture of type I
- Type IV : A regular puncture and an irregular puncture of type I

Punctures

(D. Xie 2012)

- Singular solutions $\Phi(z)$ of Hitchin's equation on sphere
- Regular puncture : simple pole $\Phi(z) \sim \frac{1}{z}$
- Irregular puncture : higher order pole $\Phi(z) \sim \frac{1}{z^{n}}, n>1$
- An irregular puncture of type I
- Type IV : A regular puncture and an irregular puncture of type I

Spindle \& Disc

- Holographic dual of punctured sphere

Spindle dual to sphere with 2 regular punctures

$$
\mathrm{WCP}_{\left[n_{-}, n_{+}\right]}^{1} \text { : two conical singularities }
$$

- Uplift : removed in M2, D3
still remain in D4, M5, D2 \rightarrow physical interpretation
Disc dual to sphere with a regular and a irregular punctures conical singularity and physical singularity

Holographic duals of M5-branes on punctured sphere

$\mathrm{AdS}_{5} \times \Sigma$

$$
\mathrm{d} s_{7}^{2}=(w P(w))^{1 / 5}\left[4 \mathrm{~d} s^{2}\left(\mathrm{AdS}_{5}\right)+\frac{w}{f(w)} \mathrm{d} w^{2}+\frac{f(w)}{P(w)} \mathrm{d} z^{2}\right]
$$

$$
h_{1}(w)=w^{2}-s_{1}, \quad h_{2}(w)=w^{2}, \quad P(w)=h_{1}(w) h_{2}(w), \quad f(w)=P(w)-w^{3}
$$

$\operatorname{AdS}_{5} \times S^{2} \times S_{z}^{1} \times S_{\phi}^{1}$ over $\left[0, w_{-}\right] \times[0,1]$

$\mathrm{N}=2$ classification

- Embed into the classification of $\mathrm{N}=2$ preserving AdS_{5} solution of 11d supergravity

$$
\text { Toda system } \quad \square_{\left(x_{1}, x_{2}\right)} D+\partial_{y}^{2} \mathrm{e}^{D}=0
$$

- With extra $\mathrm{U}(1)$ isometry, $x_{1}+i x_{2}=r e^{i \beta}$
- Can perform Bäcklund transformation

$$
r^{2} \mathrm{e}^{D}=\rho^{2}, \quad y=\rho \partial_{\rho} V(\rho, \eta) \equiv \dot{V}, \quad \log r=\partial_{\eta} V(\rho, \eta) \equiv V^{\prime}
$$

- End up with the cylindrical Laplace equation

$$
\text { Laplace equation } \quad \ddot{V}+\rho^{2} V^{\prime \prime}=0
$$

- Boundary conditions : $\dot{V}=0$ along $\eta=0$

Line charge density : $\lambda(\eta)=y(\rho=0, \eta)$

Line charge density

Generalized line charge density

Generalize the regular puncture

Generalized line charge
$\lambda=r_{a} \eta+m_{a} \quad\left\{\begin{array}{l}r_{a-1}-r_{a} \equiv l_{a} \in \mathbb{Z}, \\ N m_{a} \equiv M_{a} \in \mathbb{Z}, \\ N n_{a} \equiv N_{a} \in \mathbb{Z}\end{array}\right.$

Generalized Young diagram

[Holographic dictionaries]
$\hat{k}=N_{f+1}-\hat{N}, \quad \hat{N}=\sum_{a=1}^{f} N_{a} l_{a}, \quad \hat{n}_{a}=N_{a}, \quad l_{a}^{\mathrm{SCFT}}=l_{a}^{\mathrm{SUGRA}}$

Generalized Young diagram

[Holographic dictionaries]

$\hat{k}=N_{f+1}-\hat{N}, \quad \hat{N}=\sum_{a=1}^{f} N_{a} l_{a}, \quad \hat{n}_{a}=N_{a}, \quad l_{a}^{\mathrm{SCFT}}=l_{a}^{\mathrm{SUGRA}}$

Match to the dual field theory

Observables

- From the general line charge density, the central charge is

$$
a=N^{3} \int_{0}^{n_{f+1}} \lambda(\eta)^{2} \mathrm{~d} \eta
$$

- Scaling dimensions of BPS probe M2-branes located at the kinks are

$$
\Delta\left(\mathcal{O}_{a}\right)=N \lambda\left(n_{a}\right)
$$

- The flavour central charges are

$$
k_{F_{a}}=2 N \lambda\left(n_{a}\right)
$$

Central charge

- Gravity side computation, using the line charge density

$$
a=\frac{N^{3}}{4} \int_{0}^{n_{3}} \lambda(\eta)^{2} d \eta=\frac{N^{3}}{12 n_{3}}\left[n_{1}^{2}\left(n_{1}-n_{3}\right)^{2} l_{1}^{2}+n_{1}\left(n_{1}^{2}+n_{2}^{2}-2 n_{2} n_{3}\right) l_{1} l_{2}+n_{2}^{2}\left(n_{2}-n_{3}\right)^{2} l_{2}^{2}\right]
$$

- For the $\left(I_{\hat{N}, \hat{k}}, Y\right)$ theory,

$$
\begin{aligned}
a= & a_{Y}+\frac{\hat{N}}{\hat{N}+\hat{k}} \frac{6 I_{\rho Y}-\hat{N}\left(\hat{N}^{2}-1\right)}{12}+a_{I_{\hat{N}, \hat{k}}} \sim a_{\text {leading }}+\mathcal{O}\left(N^{2}\right) \\
c= & c_{Y}+\frac{\hat{N}}{\hat{N}+\hat{k}} \frac{6 I_{\rho Y}-\hat{N}\left(\hat{N}^{2}-1\right)}{12}+c_{I_{\hat{N}, \hat{k}}} \sim c_{\text {leading }}+\mathcal{O}\left(N^{2}\right) \\
& a_{\text {leading }}=c_{\text {leading }}=\frac{N^{3}}{12 n_{3}}\left[n_{1}^{2}\left(n_{1}-n_{3}\right)^{2} l_{1}^{2}+n_{1}\left(n_{1}^{2}+n_{2}^{2}-2 n_{2} n_{3}\right) l_{1} l_{2}+n_{2}^{2}\left(n_{2}-n_{3}\right)^{2} l_{2}^{2}\right]
\end{aligned}
$$

Scaling dimensions

- Scaling dimensions of BPS probe M2-branes, located at the kinks

$$
\begin{aligned}
& \Delta\left(\mathcal{O}_{1}\right)=n_{1}\left(l_{1}+l_{2}\right)-\frac{n_{1}}{n_{3}}\left(n_{1} l_{1}+n_{2} l_{2}\right) \\
& \Delta\left(\mathcal{O}_{2}\right)=\left(1-\frac{n_{2}}{n_{3}}\right)\left(n_{1} l_{1}+n_{2} l_{2}\right)
\end{aligned}
$$

- Conformal dimensions of BPS operators, corresponding to a'th box of the Young diagram

$$
\begin{aligned}
& \Delta\left(\mathcal{O}_{a}\right)=i_{a}-\operatorname{height}\left(i_{a}\right) \frac{\hat{N}}{\hat{k}+\hat{N}} \\
& \Delta\left(\mathcal{O}_{1}\right)=n_{1}\left(l_{1}+l_{2}\right)-\frac{n_{1}}{n_{3}}\left(n_{1} l_{1}+n_{2} l_{2}\right) \\
& \Delta\left(\mathcal{O}_{2}\right)=n_{1} l_{1}+n_{2} l_{2}-\frac{n_{2}}{n_{3}}\left(n_{1} l_{1}+n_{2} l_{2}\right)
\end{aligned}
$$

Flavour central charge

- For the flavour groups, arising at the kinks

$$
\begin{aligned}
& k_{F_{1}}=2 n_{1}\left(l_{1}+l_{2}\right)-\frac{2 n_{1}}{n_{3}}\left(n_{1} l_{1}+n_{2} l_{2}\right)=2 \Delta\left(\mathcal{O}_{1}\right) \\
& k_{F_{2}}=2\left(1-\frac{n_{2}}{n_{3}}\right)\left(n_{1} l_{1}+n_{2} l_{2}\right)=2 \Delta\left(\mathcal{O}_{2}\right)
\end{aligned}
$$

- For the a'th non-abelian gauge factor

$$
k_{F_{a}}=2 \Delta\left(\mathcal{O}_{a}\right)
$$

Conclusion

- 4d N=2 Argyles-Douglas theory, geometric engineered by wrapping M5-branes on the punctured sphere with a regular and a irregular puncture at the poles
- Holographic dual of the punctured sphere are the warped product of AdS_{5} and disc in $7 \mathrm{~d} U(1)^{2}$ gauged supergravity
- Generalization to the arbitrary type of a regular puncture, using electrostatics
- Match the observables between supergravity and dual field theory
- Apply similar methods to $\mathrm{N}=1$ theory with either spindle or disc solutions
- Four-dimensional orbifolds in 6d and 7d, dual to 1d or 2d SCFTs

Thank you

