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Outline

• Introduction : Class S theories, Argyres-Douglas theories, Spindles & Discs


• Holographic duals of M5-branes on a punctured sphere


• Our strategy : Toda system, Electrostatic reformulation


• Generalize the regular puncture


• Match to the dual field theory

(Bah, Bonetti, Minasian, Nardoni 2021)



Introduction



 Class S theory 

• 4d N=2 SCFTs


• Geometric engineered : 6d (2,0) theory compactified on a Riemann surface


• Parent theory with A-type singularity : M5-branes stack


• Lagrangian theory, described by quiver diagram

M5-
bra

nes

(Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)



  Argyres-Douglas theory 

• 4d N=2 SCFTs


• Fractional scaling dimensions


• Intrinsically strongly coupled theory


• Non-Lagrangian theory, described by Young diagram and irregular puncture data

 Class S theory 

• 4d N=2 SCFTs


• Geometric engineered : 6d (2,0) theory compactified on a Riemann surface


• Parent theory with A-type singularity : M5-branes stack


• Lagrangian theory, described by quiver diagram

M5-
bra

nes

(Argyres, Douglas 1995)

(Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)



  Argyres-Douglas theory 

• 4d N=2 SCFTs


• Fractional scaling dimensions


• Intrinsically strongly coupled theory


• Non-Lagrangian theory, described by Young diagram and irregular puncture data

 Class S theory 

• 4d N=2 SCFTs
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Riemann surface with regular punctures 

Sphere with irregular punctures

(Argyres, Douglas 1995)

(Gaiotto 2006, Gaiotto, Moore, Neitzke 2009)



Punctures
• Singular solutions �  of Hitchin’s equation on sphere


Regular puncture : simple pole � 


Irregular puncture : higher order pole � 


• An irregular puncture of type I


• Type IV : A regular puncture and an irregular puncture of type I

Φ(z)

Φ(z) ∼ 1
z

Φ(z) ∼ 1
zn , n > 1

(D. Xie 2012)
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Spindle & Disc
• Holographic dual of punctured sphere


Spindle  dual to sphere with 2 regular punctures


               �  : two conical singularities


• Uplift : removed in M2, D3 


               still remain in D4, M5, D2  �   physical interpretation 

Disc  dual to sphere with a regular and a irregular punctures


          conical singularity and physical singularity

WCP1
[n−,n+]

→



Holographic duals of  
M5-branes on punctured sphere



AdS5 × Σ

�AdS5 × S2 × S1
z × S1

ϕ over [0,w−] × [0,1]

ℝ2/ℤlS1 × ℝ

ds2
7 = (wP(w))

1/5[4ds2(AdS5) +
w

f(w)
dw2 +

f(w)
P(w)

dz2]
h1(w) = w2 − s1, h2(w) = w2, P(w) = h1(w)h2(w), f(w) = P(w) − w3

(Bah, Bonetti, Minasian, Nardoni 2021)

Monopole

Sm
ea

re
d 

M
5 

br
an

e



N=2 classification
• Embed into the classification of N=2 preserving �  solution of 11d supergravity


Toda system    � 


• With extra U(1) isometry, � 


• Can perform B� cklund transformation


� 


• End up with the cylindrical Laplace equation


Laplace equation     � 


• Boundary conditions  :   �    along  � 


Line charge density  :   �

AdS5

□(x1,x2) D + ∂2
yeD = 0

x1 + ix2 = reiβ

··a

r2eD = ρ2 , y = ρ∂ρV(ρ, η) ≡ ·V , log r = ∂ηV(ρ, η) ≡ V′ �

··V + ρ2V′�′ � = 0

·V = 0 η = 0

λ(η) = y(ρ = 0, η)

(Gaiotto, Maldacena 2009)



Line charge density
Ellipse

Focal point
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Line charge density
Ellipse
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Monopole Monopole

Generalized line charge density

γ/4



Generalize the regular puncture



�λ = raη + ma

ra−1 − ra ≡ la ∈ ℤ ,
Nma ≡ Ma ∈ ℤ ,
Nna ≡ Na ∈ ℤ ̂k = Nf+1 − N̂ , N̂ =

f

∑
a=1

Nala, ̂na = Na , lSCFT
a = lSUGRA

a

Generalized Young diagram

[ Holographic dictionaries ]

Generalized line charge
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Generalized line charge
Two kinks case



Match to the dual field theory



Observables
• From the general line charge density, the central charge is


 � 


• Scaling dimensions of BPS probe M2-branes located at the kinks are


� 


• The flavour central charges are


�

a = N3 ∫
nf+1

0
λ(η)2dη

Δ(𝒪a) = Nλ(na)

kFa
= 2Nλ(na)



Central charge
• Gravity side computation, using the line charge density


� 


• For the �  theory, 


� 


�

a =
N3

4 ∫
n3

0
λ(η)2dη =

N3

12n3 [n2
1(n1 − n3)2 l2

1 + n1(n2
1 + n2

2 − 2n2n3) l1l2 + n2
2(n2 − n3)2 l2

2]
(IN̂, ̂k, Y)

a = aY +
N̂

N̂ + ̂k

6IρY − N̂(N̂2 − 1)
12

+ aIN̂, ̂k
∼ aleading + 𝒪(N2)

c = cY +
N̂

N̂ + ̂k

6IρY − N̂(N̂2 − 1)
12

+ cIN̂, ̂k
∼ cleading + 𝒪(N2)

aleading = cleading =
N3

12n3 [n2
1(n1 − n3)2 l2

1 + n1(n2
1 + n2

2 − 2n2n3) l1l2 + n2
2(n2 − n3)2 l2

2]



Scaling dimensions
• Scaling dimensions of BPS probe M2-branes, located at the kinks


                                                        � 


• Conformal dimensions of BPS operators, corresponding to a’th box of the Young diagram


                                                       �

Δ(𝒪1) = n1(l1 + l2) −
n1

n3
(n1l1 + n2l2)

Δ(𝒪2) = (1 −
n2

n3 )(n1l1 + n2l2)

Δ(𝒪a) = ia − height(ia)
N̂

̂k + N̂

Δ(𝒪1) = n1(l1 + l2) −
n1

n3
(n1l1 + n2l2)

Δ(𝒪2) = n1l1 + n2l2 −
n2

n3
(n1l1 + n2l2)



Flavour central charge
• For the flavour groups, arising at the kinks


                              � 


• For the a’th non-abelian gauge factor


                                                  �

kF1
= 2n1(l1 + l2) −

2n1

n3
(n1l1 + n2l2) = 2Δ(𝒪1)

kF2
= 2 (1 −

n2

n3 )(n1l1 + n2l2) = 2Δ(𝒪2)

kFa
= 2Δ(𝒪a)



Conclusion
• 4d N=2 Argyles-Douglas theory, geometric engineered by wrapping M5-branes on 

the punctured sphere with a regular and a irregular puncture at the poles


• Holographic dual of the punctured sphere are the warped product of �  and 
disc in 7d �  gauged supergravity


• Generalization to the arbitrary type of a regular puncture, using electrostatics


• Match the observables between supergravity and dual field theory


• Apply similar methods to N=1 theory with either spindle or disc solutions


• Four-dimensional orbifolds in 6d and 7d, dual to 1d or 2d SCFTs

AdS5
U(1)2



Thank you


