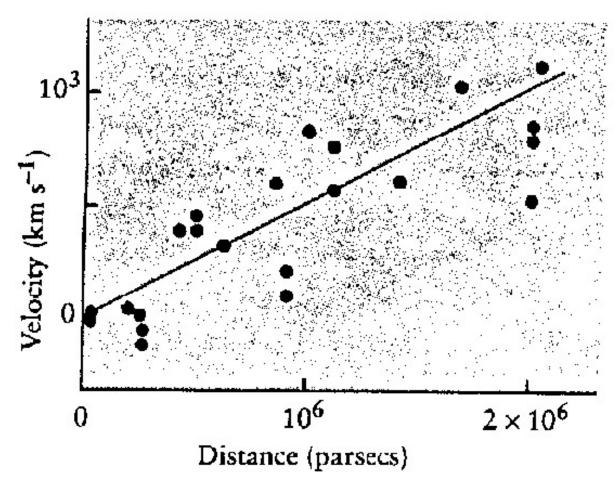
Reducing the H_0 Tension with Exponential Acoustic Dark Energy

Lu Yin

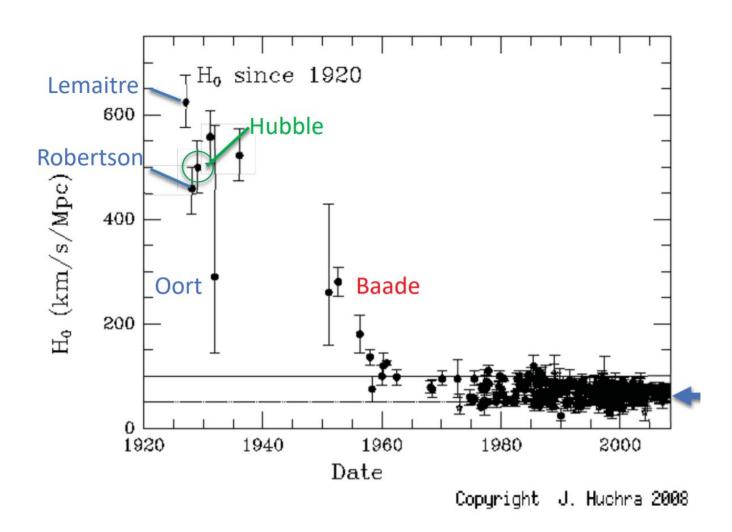

CQUeST

Sogang University

The discovery of Hubble constant

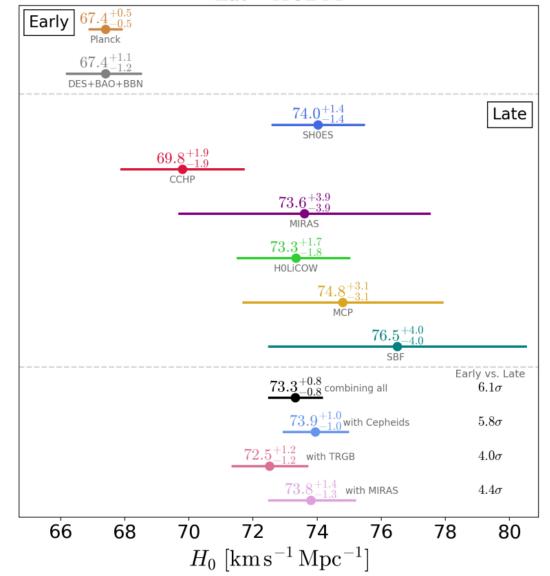
$$v = H_0 \times D$$

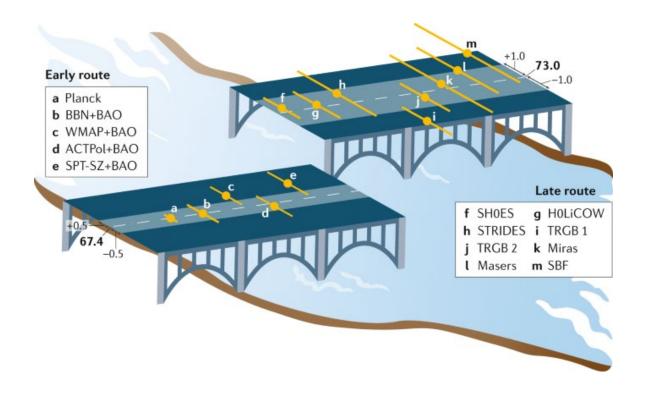
E. Hubble, Proc. Nat. Acad. Sci. 15 (1929), 168-173


Edwin Hubble

V : recessional velocity

D: the proper distance to the observer

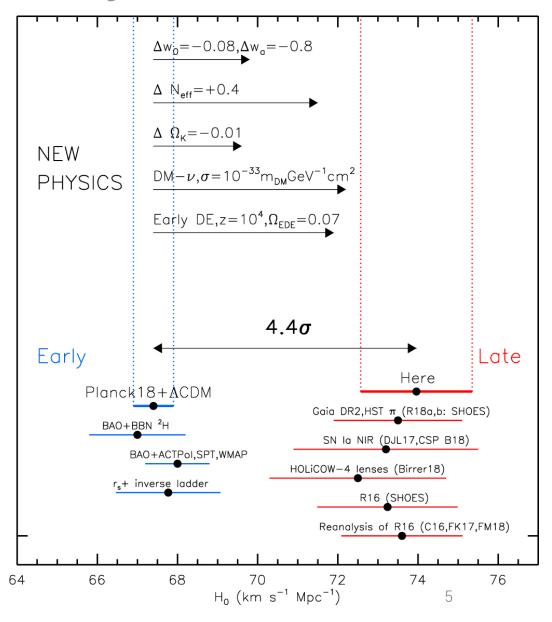

 H_0 : Hubble's constant [km/s/Mpc]


History of the Hubble constant

The H_0 tension

 $flat - \Lambda CDM$

[L. Verde, T. Treu and A. G. Riess *Nature Astron.* 3₄891]

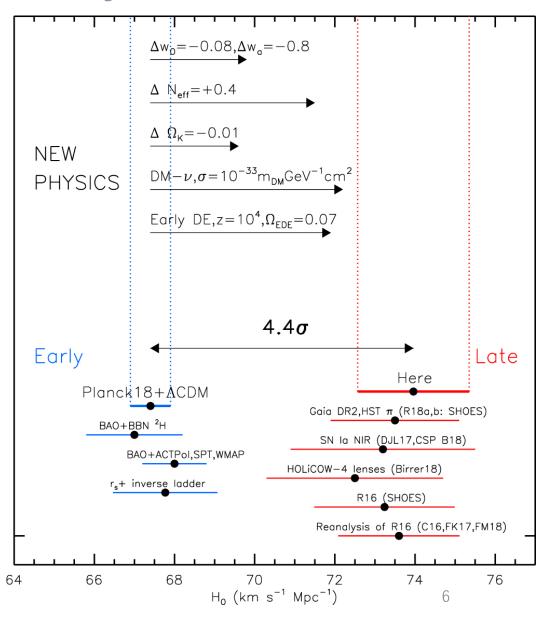

Potential new physics beyond ACDM

Another relativistic species (e.g.,additional neutrino or dark radiation)

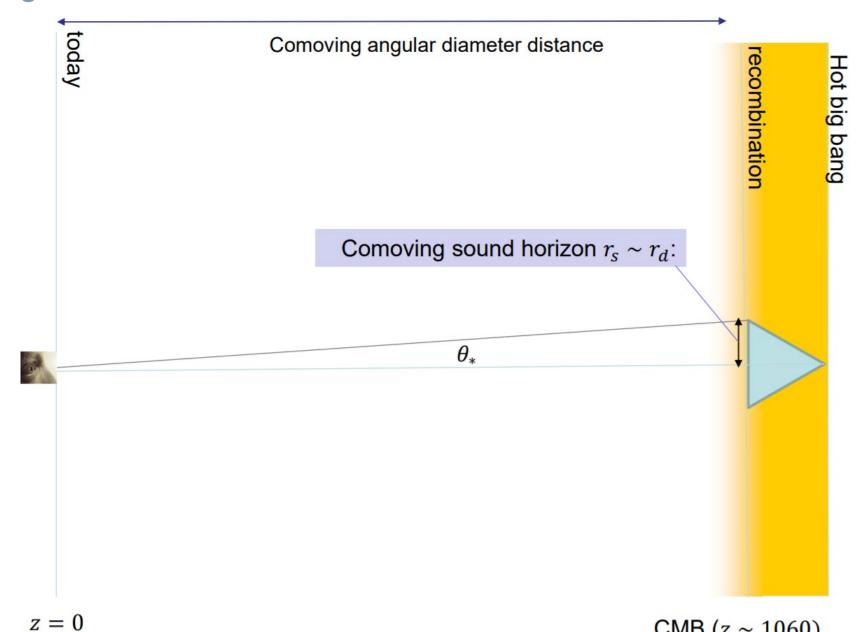
Non-zero spatial curvature

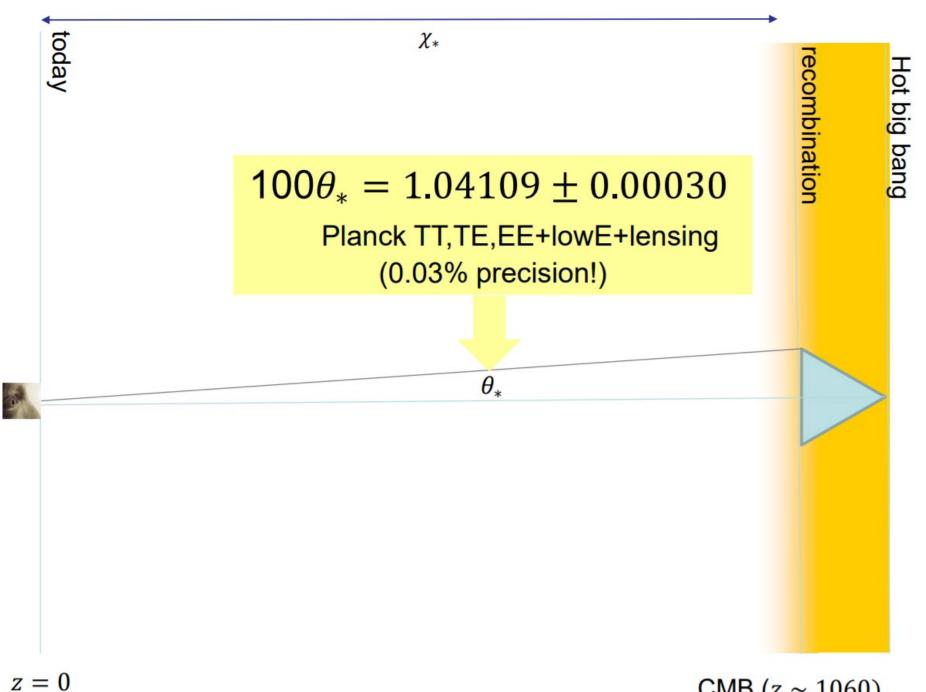
A decaying relic massive dark matter

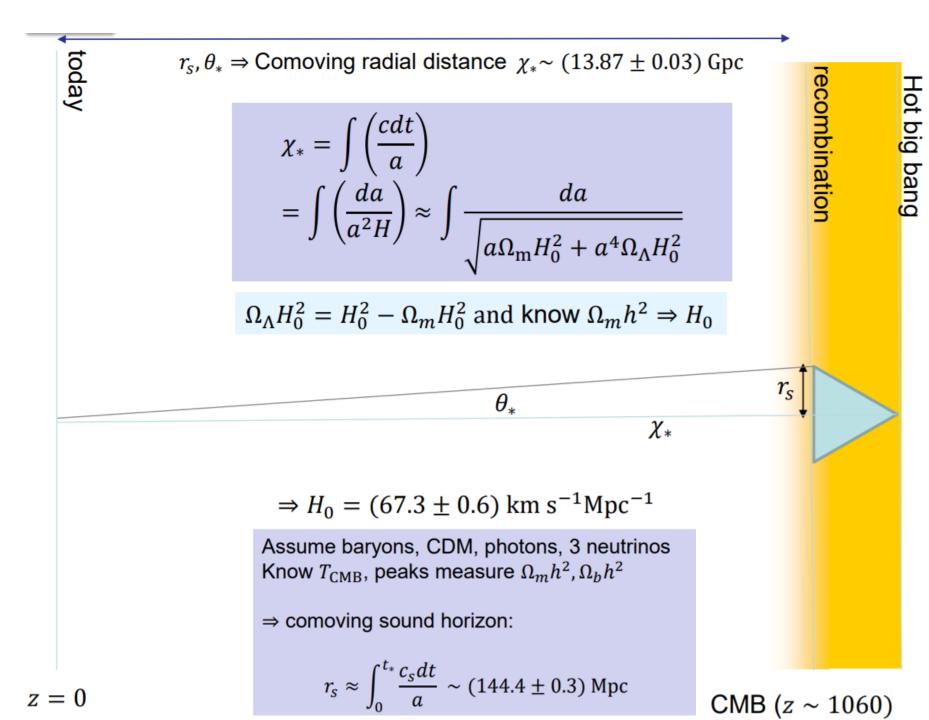
Early dark energy


Potential new physics beyond ACDM

Another relativistic species (e.g.,additional neutrino or dark radiation)


Non-zero spatial curvature


A decaying relic massive dark matter


Early dark energy

H_0 from CMB and Planck

In the Realm of the Hubble tension – a Review of Solutions †

Eleonora Di Valentino^{1*}, Olga Mena², Supriya Pan³, Luca Visinelli⁴, Weiqiang Yang⁵, Alessandro Melchiorri⁶, David F. Mota⁷, Adam G. Riess^{8,9}, Joseph Silk^{8,10,11}

[Class.Quant.Grav. 38 (2021) 15, 153001]

4	Earl	y Dark Energy
	4.1	Anharmonic Oscillations
	4.2	Ultra-Light Axions
		4.2.1 Dissipative Axion:
		4.2.2 $$ Axion Interacting With a Dilaton:
	4.3	Power-Law Potential
	4.4	$Rock \ 'n' \ Roll . \ . \ . \ . \ . \ . \ . \ . \ . \ .$
	4.5	New Early Dark Energy
	4.6	Anti-de Sitter phase
	4.7	Graduated Dark Energy
>	4.8	Acoustic Dark Energy
		$4.8.1 \hbox{Exponential Acoustic Dark Energy:} \ .$

EDE in α -attractors

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski

Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles St., Baltimore, MD 21218

(Dated: November 8, 2016)

$$w_{\varphi}(z) = \frac{1 + w_n}{1 + (a_c/a)^{3(1+w_n)}} - 1$$

$$w_n = (n-1)/(n+1)$$

$$n = 2 \mid n = 3 \mid n = \infty$$

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski

Department of Physics and Astronomy, Johns Hopkins University,

3400 N. Charles St., Baltimore, MD 21218

(Dated: November 8, 2016)

$$w_{\varphi}(z) = \frac{1 + w_n}{1 + (a_c/a)^{3(1+w_n)}} - 1$$

Acoustic Dark Energy: Potential Conversion of the Hubble Tension

Meng-Xiang Lin,¹ Giampaolo Benevento,^{2,3,1} Wayne Hu,¹ and Marco Raveri¹

¹Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics,
Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA

²Dipartimento di Fisica e Astronomia "G. Galilei",
Università degli Studi di Padova, via Marzolo 8, I-35131, Padova, Italy

³INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy

$$w_{\text{ADE}}(a) = \frac{1 + w_{\text{f}}}{[1 + (a_c/a)^{3(1+w_{\text{f}})/p}]^p} - 1$$

$$c_s^2 = w_{\text{f}} = 1$$

$$p = 1/2$$

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski

Department of Physics and Astronomy, Johns Hopkins University,

3400 N. Charles St., Baltimore, MD 21218

(Dated: November 8, 2016)

$$w_{\varphi}(z) = \frac{1 + w_n}{1 + (a_c/a)^{3(1+w_n)}} - 1$$

Acoustic Dark Energy: Potential Conversion of the Hubble Tension

Meng-Xiang Lin, ¹ Giampaolo Benevento, ^{2,3,1} Wayne Hu, ¹ and Marco Raveri ¹ Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA

² Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, I-35131, Padova, Italy

³ INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy

$$w_{\text{ADE}}(a) = \frac{1 + w_{\text{f}}}{[1 + (a_c/a)^{3(1+w_{\text{f}})/p}]^p} - 1$$

Reducing the H_0 Tension with Exponential Acoustic Dark Energy

Lu Yin1,2,*

¹Center for Quantum Spacetime, Sogang University, Seoul 04107, Korea ²Department of Physics, Sogang University, Seoul 04107, Korea

$$w_{eADE}(a) = 2^{1 - \frac{a_c}{2a}} - 1$$

The eADE have less additional parameters

Value of EoS	$a \ll a_c$	$a = a_c$	a = 1
w_{eADE}	-1	$\sqrt{2}-1$	1
w_{ADE}	-1	$\sqrt{2}-1$	1
w_{EDE} with $n=3$	-1	-1/4	1/2
w_{EDE} with $n=2$	-1	-1/3	1/3

$$w_{\varphi}(z) = \frac{1 + w_n}{1 + (a_c/a)^{3(1+w_n)}} - 1$$

$$w_{\text{ADE}}(a) = \frac{1 + w_{\text{f}}}{[1 + (a_c/a)^{3(1+w_{\text{f}})/p}]^p} - 1$$

Reducing the H_0 Tension with Exponential Acoustic Dark Energy

¹Center for Quantum Spacetime, Sogang University, Seoul 04107, Korea ²Department of Physics, Sogang University, Seoul 04107, Korea

$$w_{eADE}(a) = 2^{1 - \frac{a_c}{2a}} - 1$$

The eADE have less additional parameters

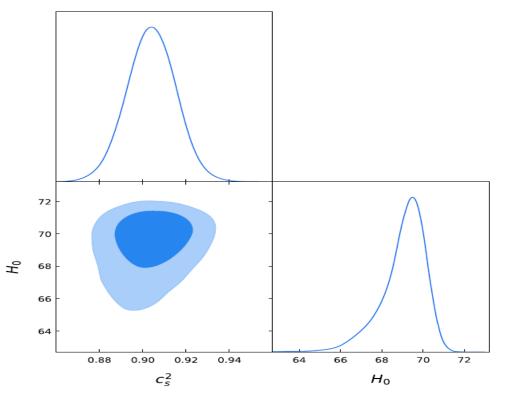
Background evolution and linear perturbation for eADE

The eADE density evolves as

$$\Omega_{eADE}(a) = \frac{\rho_{eADE}}{\rho_{tot}} = 2f_c \frac{(c_s^2 + 1)^2 - (w_{eADE} + 1)^2}{(c_s^2 + 1)^2}$$

When the sound speed equal to 1:

$$\Omega_{eADE}(a) \stackrel{c_s^2=1}{=} f_c \left[2 - \frac{(w_{eADE}(a)+1)^2}{2} \right]$$


$$P_{eADE} \stackrel{c_s^2 = 1}{=} \frac{6H^2 f_c}{8\pi G} (-2\xi^3 + \xi^2 + 2\xi^1 - \xi^0) \qquad \qquad \xi(a) = 2^{-\frac{a_c}{2a}}$$

The perturbation gives as:

$$\dot{\delta}_{eADE} = -(1 + w_{eADE})(\theta_{eADE} + \frac{\dot{h}}{2}) - 3\frac{\dot{a}}{a}(c_s^2 - w_{eADE})\delta_{eADE} - k\theta_{eADE},$$

$$\dot{\theta}_{eADE} = \frac{\dot{a}}{a}(2w_{eADE} - 1)\theta_{eADE} - \frac{\dot{w}_{eADE}}{1 + w_{eADE}}\theta_{eADE} + \frac{c_s^2k^2}{a^2(1 + w_{eADE})}\delta_{eADE},$$

$$1 + w_{eADE}(a) = 2^{1 - \frac{a_c}{2a}}$$
$$f_c = \frac{\rho_{eADE}(a_c)}{\rho_{tot}(a_c)}$$

Background evolution and linear perturbation for eADE

The eADE density evolves as

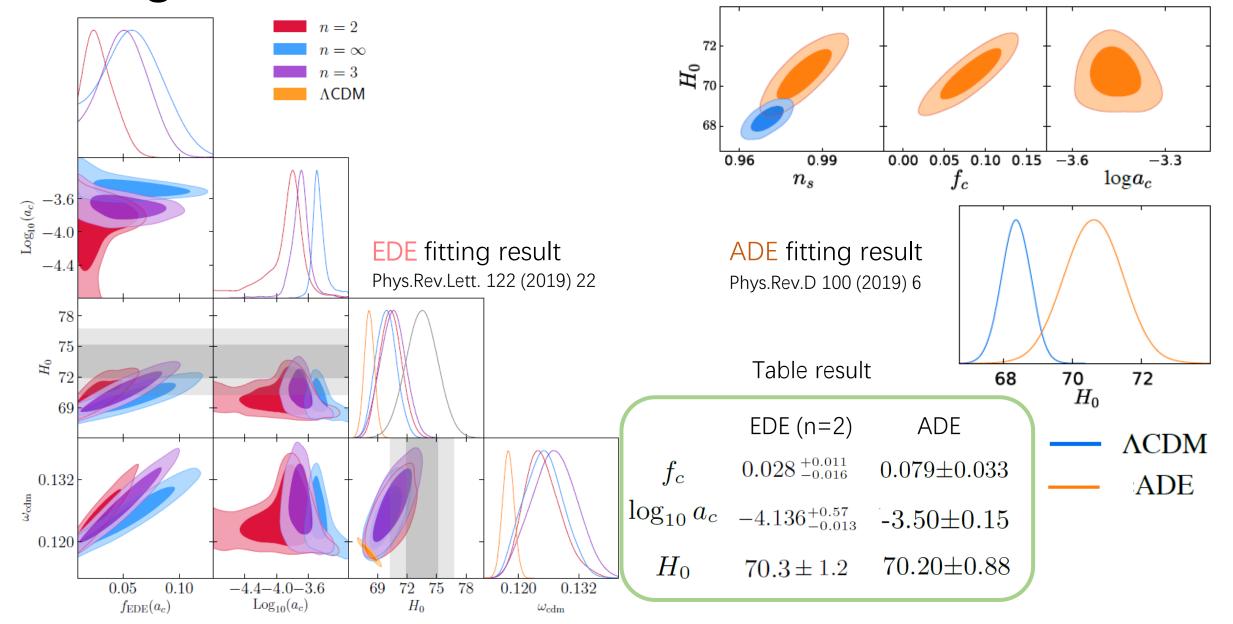
$$\Omega_{eADE}(a) = \frac{\rho_{eADE}}{\rho_{tot}} = 2f_c \frac{(c_s^2 + 1)^2 - (w_{eADE} + 1)^2}{(c_s^2 + 1)^2}$$

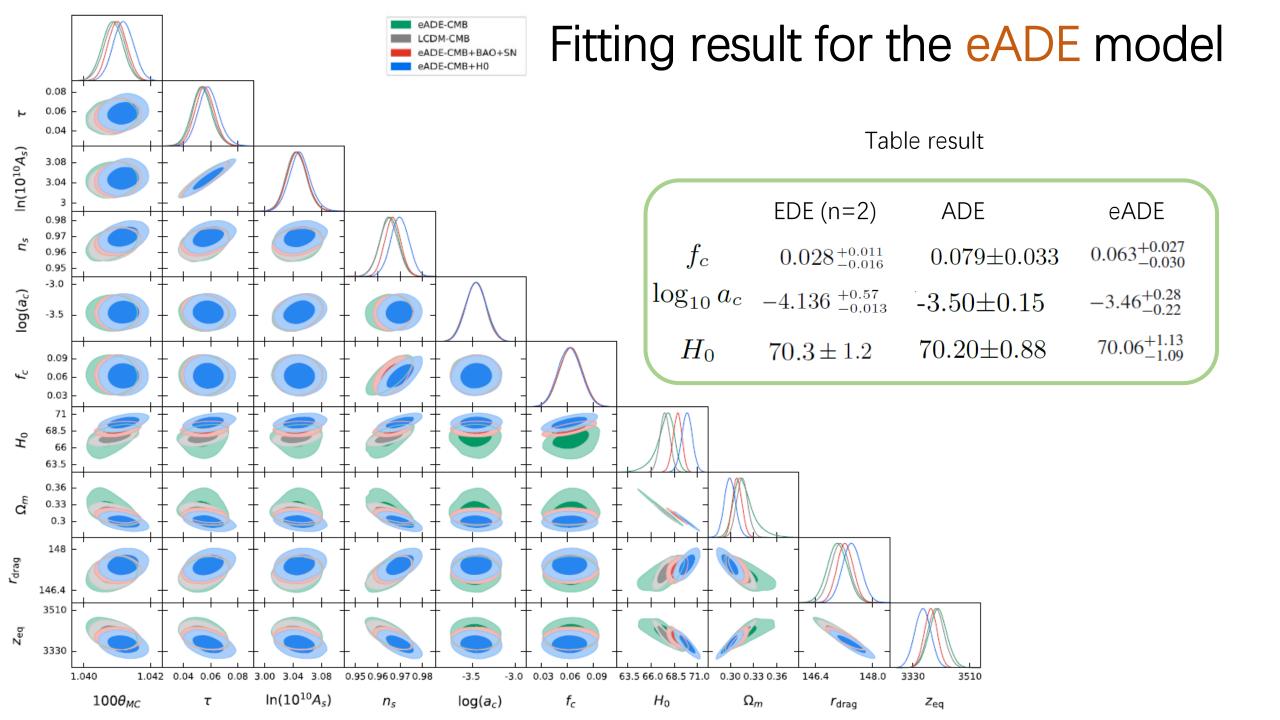
When the sound speed equal to 1:

$$\Omega_{eADE}(a) \stackrel{c_s^2=1}{=} f_c \left[2 - \frac{(w_{eADE}(a) + 1)^2}{2} \right]$$

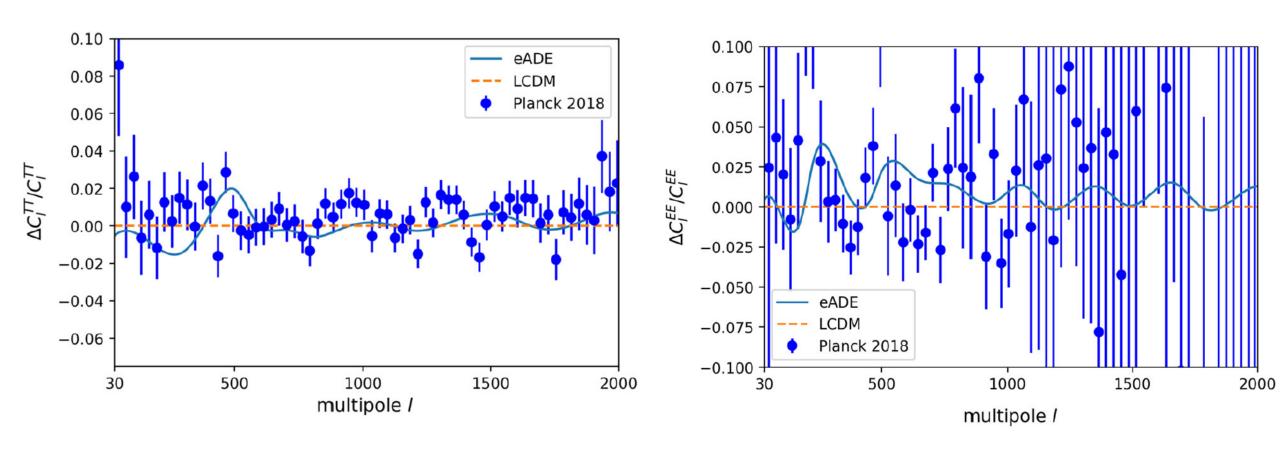
$$P_{eADE} \stackrel{c_s^2=1}{=} \frac{6H^2 f_c}{8\pi G} \left(-2\xi^3 + \xi^2 + 2\xi^1 - \xi^0 \right)$$

The perturbation gives as:


$$\dot{\delta}_{eADE} = -(1 + w_{eADE})(\theta_{eADE} + \frac{\dot{h}}{2}) - 3\frac{\dot{a}}{a}(c_s^2 - w_{eADE})\delta_{eADE} - k\theta_{eADE},$$


$$\dot{\theta}_{eADE} = \frac{\dot{a}}{a}(2w_{eADE} - 1)\theta_{eADE} - \frac{\dot{w}_{eADE}}{1 + w_{eADE}}\theta_{eADE} + \frac{c_s^2k^2}{a^2(1 + w_{eADE})}\delta_{eADE},$$

$$1 + w_{eADE}(a) = 2^{1 - \frac{a_c}{2a}}$$
$$f_c = \frac{\rho_{eADE}(a_c)}{\rho_{tot}(a_c)}$$

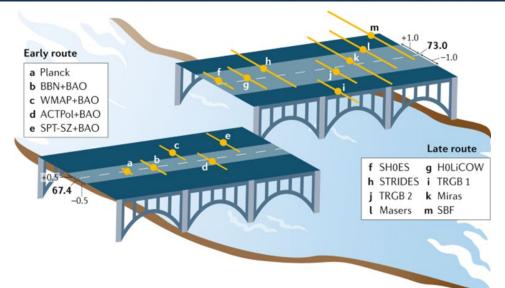

$$n=2 \mid n=3 \mid n=\infty \ f_{
m EDE}(a_c) \quad 0.028 \quad 0.050 \quad 0.054 \ f_{
m ADE}(a_c) \quad 0.082 \ f_{
m eADE}(a_c)$$

Fitting result for the EDE and ADE model

The difference in CMB power spectra

The eADE model closer to the CMB data than LCDM, especially in the EE mode.

Conclusion


 The eADE is a new dark fluid model with exponential EoS to release the H0 tension effectively.

• eADE model has *less additional parameters*

• The eADE is *closer to the CMB observation* than LCDM.

Summary of recent H_0 values

```
Cepheids 74.3 \pm 2.1 (2.8%) [WLF+ 2012] + SNIa: 73.24 \pm 1.74 (2.4%) [Riess+ 2016] 73.52 \pm 1.62 (2.2%) [Riess+ 2016]
```



```
\( \text{CDM:} \) 67.8 \pm 0.9 (1.3%) [Planck 2015] + polarization 66.93 \pm 0.62 (0.9%) [Planck 2016] 67.4 \pm 0.5 (0.7%) [Planck 2018]
```

In the next

• What is the difference between EDE, ADE, eADE model?

My model: the eADE model and its fitting result.

Conclusion

- Release Ho REASON
- TU

$$r_{\rm s} = \int_0^{t_{\star}} \frac{dt}{a(t)} c_s = \int_{z_{\star}}^{\infty} \frac{dz}{H(z)} c_s$$

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski

Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles St., Baltimore, MD 21218

(Dated: November 8, 2016)

Acoustic Dark Energy: Potential Conversion of the Hubble Tension

Meng-Xiang Lin,¹ Giampaolo Benevento,^{2,3,1} Wayne Hu,¹ and Marco Raveri¹

¹Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics,
Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA

²Dipartimento di Fisica e Astronomia "G. Galilei",
Università degli Studi di Padova, via Marzolo 8, I-35131, Padova, Italy

³INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy

Reducing the H_0 Tension with Exponential Acoustic Dark Energy

Lu Yin^{1,2,*}

¹Center for Quantum Spacetime, Sogang University, Seoul 04107, Korea ²Department of Physics, Sogang University, Seoul 04107, Korea