Indirect search for decaying dark matter: a generic approach

Arpan Kar

Center for Quantum Spacetime (CQUeST), Sogang University

Based on arXiv:2204.06024

June 30, 2022

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

- We know that, nearly 25% of the universe's total energy density is attributed to dark matter (DM).
- Standard Model (SM) of particle physics does not provide a suitable DM candidate.
 - \Rightarrow Beyond Standard Model (BSM) theories.
- DM is not necessarily absolutely stable; but it can decay.
- In order to explain the observed DM density, it must be present till today.

 \Rightarrow DM lifetime (τ) should be much larger than the age of the Universe $\sim 10^{17}\,{\rm s.}$

Indirect signals of decaying DM

- Longevity of DM particle \Rightarrow Very small DM-SM couplings.
- One promising way to look for decaying DM: Indirect search observations.
- Several production mechanisms exist. \rightarrow Give rise to decaying DM particles over a wide range of masses.
- Usually considered DM decay channels (decay modes): a pair of SM particles $(\chi \rightarrow SM_1SM_2)$.
- Most of the existing and future indirect searches are sensitive to the signals of decaying DM particles in the GeV TeV mass range.

Indirect signals of decaying DM

- We consider a decaying scalar DM in the mass range 10 GeV 10 TeV.
- Its all possible two-body SM decay channels (SM₁SM₂): { e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $b\bar{b}$, $t\bar{t}$, $q\bar{q}$, W^+W^- , ZZ, $\gamma\gamma$, gg, hh, $Z\gamma$, Zh, $\nu\bar{\nu}$ }
- Primary DM decay products $\rightarrow \gamma$, $e^-(e^+)$, $p(\bar{p})$ and $\nu(\bar{\nu})$.
- For this DM mass range, most sensitive indirect search observations:
 - γ -rays: Fermi-LAT isotropic gamma-ray background (IGRB)
 - $e^{-}(e^{+}), p(\bar{p}): AMS-02 \text{ cosmic-ray}$
 - **3** $\nu(\bar{\nu})$: Super-Kamiokande neutrino

- A decaying DM scenario is specified by:
 - DM mass m_{χ} .
 - Total decay width Γ ($\equiv \tau^{-1}$).
 - Branching ratio (BR) of each decay channel.
- Data of indirect search observations constrain the DM parameter space.
- DM contributions are calculated and compared against the observed astrophysical data, taking the standard processes into account.
 - \rightarrow Maximum contribution from DM decay is constrained.
 - \Rightarrow Upper limit on Γ .
- In the usual approach, a single decay channel is assumed at a time with 100% BR.

AMS-02 & Fermi-LAT constraints

AMS-02 positron constraints (95% C.L.).

Fermi-LAT IGRB constraints (95% C.L.).

イロト イポト イヨト イヨト

- For $\nu \bar{\nu}$ channel, e^{\pm} and γ are produced via electroweak radiation. \Rightarrow Fluxes are suppressed if $\nu \bar{\nu}$ pairs are of low energy.
 - \Rightarrow There exists no constraints for $m_{\chi} \lesssim$ a few hundreds of GeV.

Super-Kamiokande constraints

• The $\nu\bar{\nu}$ channel is not constrained by AMS-02 and Fermi-LAT for $m_{\chi} \lesssim$ a few hundreds of GeV.

 \rightarrow One should include the neutrino flux observation experiments, such as the Super-Kamiokande.

• Most stringent constraints are obtained for $\nu\bar{\nu}$ channel.

Super-Kamiokande constraints (95% C.L.).

3

• Given a particular DM decay channel, the constraints obtained from different observations are quite different.

 \to Therefore, for a specific channel, a value of Γ allowed by one observation may be ruled out by other observations.

- Similarly, given any particular observation, the upper-limits on Γ are obtained for different DM decay channels also largely vary.
- In a generic model of decaying DM: χ may decay to multiple channels with arbitrary BRs.
- One needs a methodology to obtain a BR independent upper-limit on Γ which is allowed by all observations.

- $\Gamma > \Gamma_{\rm max}$: No BR combination is allowed by all observations.
- $\Gamma < \Gamma_{\max}$: At least one BR combination is always allowed by all observations.

Maximum allowed total decay width $\Gamma_{\rm max}$

• Top panel: BR $(\chi \rightarrow \nu \bar{\nu}) = 0\%$ \rightarrow Constraints are weaker than 100%

BR scenarios.

• Bottom panel: $BR(\chi \rightarrow \nu \bar{\nu}) = 0\% - 100\%$ $\rightarrow \Gamma_{max}$ is large for $m_{\chi} \lesssim$ a few hundreds of GeV.

- When Super-Kamiokande data is included

 \rightarrow constraint on Γ_{\max} strengthens for lower values of m_{χ} .

Detection prospects in upcoming radio observations

- DM decays inside DM dominated astrophysical objects generate energetic e^{\pm} pairs.
 - \rightarrow Radiate energy via cycloidal motion in the galactic magnetic field.

 \rightarrow Give rise to radio synchrotron fluxes which can be observed in radio telescopes.

 \rightarrow New avenue for DM indirect search observations.

- Local dwarf spheroidal (dSph) galaxies are most suitable targets because of their
 - Proximity to the Milky Way galaxy.
 - High DM content.
 - Low star formation rates.
- We have considered the ultrafaint dSph Seg 1 as the target.

Square Kilometre Array (SKA)

- Upcoming radio telescope to be built in Australia and South Africa.
 - Larger effective area
- \Rightarrow Lower rms noise level.
 - Wide frequency range (50 MHz 50 GHz).
 - Highly sensitive to GeV TeV scale decaying DM signals.

• We investigate the detectability prospect of the DM signal at the SKA in a BR independent manner, assuming a 100 hours of observation of Seg 1 dSph.

Methodology to determine the SKA detectability

• S_{ν}^{\max} and S_{ν}^{\min} determine the detectability of any given parameter point (m_{χ}, Γ) .

 \to detectable for all BR combs. (both $S_\nu^{\rm max}$ and $S_\nu^{\rm min}$ are above the SKA threshold)

 \rightarrow detectable for specific BR combs. (only $S_{\nu}^{\rm max}$ is above the SKA threshold)

 \rightarrow non-detectable for any BR combs. (both S_{ν}^{\max} and S_{ν}^{\min} are below the SKA threshold)

SKA Projections

- *m*_χ Γ plane can be classified based on the SKA detectability:
 - \rightarrow detectable for all BR combs.
 - \rightarrow detectable for specific BR combs.

 \rightarrow non-detectable for any possible BR combs.

• Top panel: $\mathsf{BR}(\chi \to \nu \bar{\nu}) = 0\%$

- Large portion of the DM parameter space can be probed.

• Bottom panel:

 $\mathsf{BR}(\chi \to \nu \bar{\nu}) = 0\% - 100\%$

- BR independent probe is possible for $m_{\chi} \gtrsim 250 \, {\rm GeV}$ (otherwise, $\nu \bar{\nu}$ pairs are low energetic).

- For a GeV TeV scale DM decaying into two-body SM decay channels, robust BR independent upper limit on Γ ($\Gamma_{\rm max}$) has been derived, combining various astrophysical data.
- There exists no BR combination for which any value of Γ larger than $\Gamma_{\rm max}$ is allowed by all observations. At least one BR combination consistent with all observations always exist for all values of Γ smaller than $\Gamma_{\rm max}.$
- When $\nu \bar{\nu}$ channel is included, the BR independent upper limit on Γ weakens for DM mass less than a few hundreds of GeV. However, for heavier DM particles, the DM parameter space is still severely constrained.

Conclusion

- Future SKA observation will probe a larger region of the allowed DM parameter space, in a BR independent way.
- On including $\nu \bar{\nu}$ channel one finds that, BR independent probe of the decaying DM parameter space at the SKA is possible only when DM mass is larger than a few hundreds of GeV.

<ロ> <問> < 回> < 回> < 回>

Backup slides

- Many BSM scenarios make the DM absolutely stable by imposing global continuous symmetries
- Such symmetries may be broken due to some high-scale suppressed interactions

 \Rightarrow Preferably by Planck-scale mediated interactions [ArXiV :1508.06635]

Fluxes from $\nu\bar{\nu}$ final state

- γ and e^{\pm} spectra from the $\nu\bar{\nu}$ channel are produced via the radiation of electroweak gauge bosons.
- On-shell W and Z-bosons are not abundantly produced from low energy $\nu\bar{\nu}$ pairs.
- Fluxes are suppressed compared to the corresponding fluxes obtained from other decay channels.

 γ and e^{\pm} spectra for $\mu^{+}\mu^{-}, \tau^{+}\tau^{-}, b\bar{b}$ and $\nu\bar{\nu}$ assuming 100% BR for each channel.

Planck CMB constraints

- Planck data of CMB anisotropy measurement is also useful
- e⁺e⁻ and γ produced from DM decays inject energy to perturb the CMB spectra.
- Any substantial perturbation to the CMB spectra is strongly constrained by the Planck CMB measurement and upper limit on Γ is derived
- 95% C.L. Upper limit on Γ obtained from Planck data of CMB measurement:

$$\Gamma \lesssim \left(\frac{\vec{N}.\vec{e}_1}{\vec{e}_1 (30\,{\rm MeV}\,e^+e^-)} \right)^{-1} \, \left(2.6 \times 10^{25}\,{\rm s} \right)^{-1}.$$

 $ec{N}$: Contains the γ and e^\pm spectra induced by DM decay.

 \vec{e}_1 : First principal component.

 \rightarrow Eigenvector corresponding to the largest eigenvalue of the marginalized Fisher matrix.

Planck CMB constraints

Planck CMB constraints (95% C.L.).

Fermi-LAT IGRB constraints

Extra-galactic γ-ray flux:

$$\begin{aligned} \frac{d\Phi^{\mathrm{EG}}}{dE_{\gamma}} &= \frac{\Gamma}{4\pi m_{\chi}} c \,\Omega_{\mathrm{DM}} \,\rho_{c} \sum_{f} B_{f} \int_{0}^{\infty} dz \frac{1}{H(z)} e^{-\tau(E_{\gamma},z)} \\ & \left[\frac{dN_{f}^{\gamma}}{dE_{\gamma}} (E_{\gamma}(1+z)) + \frac{2}{E_{\gamma}(1+z)} \right. \\ & \left. \times \int_{m_{e}}^{m_{\chi}/2} dE_{e} \frac{P_{\mathrm{IC}}^{\mathrm{CMB}}(E_{\gamma}(1+z), E_{e},z)}{b_{\mathrm{IC}}^{\mathrm{CMB}}(E_{e})} \int_{E_{e}}^{m_{\chi}/2} d\tilde{E}_{e} \frac{dN_{f}^{e^{+}}}{d\tilde{E}_{e}} (\tilde{E}_{e}) \right]. \end{aligned}$$

• Background flux:

$$\frac{d\Phi^{\rm BG}}{dE_{\gamma}} = I_{100} \left(\frac{E_{\gamma}}{100\,{\rm MeV}}\right)^{-\beta} \,\exp\left(-\frac{E_{\gamma}}{E_c}\right).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

AMS-02 positron constraints

• Diffusion-loss equation:

$$\frac{\partial N_i}{\partial t} = \vec{\nabla} . (D\vec{\nabla})N_i + \frac{\partial}{\partial p}(b(p,\vec{r}))N_i + Q_i(p,\vec{r}) + \sum_{j>i} \beta n_{gas}(\vec{r})\sigma_{ji}N_j - \beta n_{gas}(\vec{r})\sigma_i^{in}(E_k)N_i.$$

• DM source term:

$$Q_{\chi}(p,\vec{r}) = \frac{\Gamma}{m_{\chi}} \sum_{f} B_{f} \frac{dN_{f}^{e^{+}}}{dE}(E)\rho_{d}(\vec{r}).$$

 $ho_d(\vec{r})$: NFW profile, $r_\odot = 20 \, \text{kpc}$ and $ho_\odot = 0.25 \, \text{GeV} \, \text{cm}^{-3}$.

- Diffusion term: $D(\rho, |\vec{r}|, z) = D_0 e^{|z|/z_t} \left(\frac{\rho}{\rho_0}\right)^{\delta}$ $D_0 = 2.7 \times 10^{28} \text{ cm}^2 \text{s}^{-1}$, $\delta = 0.6$ and $z_t = 4 \text{ kpc}$.
- Local magnetic field $B_{\odot} = 8.9 \,\mu \text{G}.$

・ロト・西ト・モン・ビー ひゃう

Super-Kamiokande constraints

- ON source region: A circular region centered around the galactic center (GC) with half-opening angle 80°.
 OFF source region: Another circular region of the same size but offset by 180° in Right Ascension with respect to the GC.
- Neutrino flux:

$$\frac{d\Phi_{\rm ON,OFF}}{dE_{\nu}} = J_{\rm ON,OFF} \frac{\Gamma}{4\pi m_{\chi}} \sum_{f} B_{f} \frac{2}{3} \frac{dN_{f}^{\nu}}{dE_{\nu}} (E_{\nu}).$$

Astrophysical J-factors:

$$J_{\rm ON,OFF} = \int_{\Delta\Omega_{\rm ON,OFF}} d\Omega \int_{l.o.s} ds \, \rho_d(\vec{r}).$$

Threshold BR combinations

- \bullet Threshold BR: The BR combination for which $\Gamma_{\rm max}$ is obtained.
 - Different for different m_{χ} .
- Left panel: $BR(\chi \rightarrow \nu \bar{\nu}) = 0\%$
 - Threshold BR are mostly determined by $\mu^+\mu^-, \tau^+\tau^-, b\bar{b}, gg$.
- Right panel: BR($\chi \rightarrow \nu \bar{\nu}$) = 0% 100%
 - -Threshold BR are mostly dominated by the $\nu \bar{\nu}$ channel for $m_\chi \lesssim {\cal O}({
 m TeV}).$

• Not-unique, several BR combinations give similar Γ_{\max} .

Effects of the $\nu\bar{\nu}$ decay mode

- When BR for the νν̄ channel is fixed at 50% upper limit on Γ strengthens for m_χ ≤ a few hundreds of GeV.
- Super-Kamiokande data dictates the limit for lower m_{χ} if BR $(\chi \rightarrow \nu \bar{\nu}) = 100\%$, while Planck, Fermi-LAT and AMS-02 decides the limit for $m_{\chi} \gtrsim$ a few hundreds of GeV.

DM decay induced radio signals

Transport equation:

$$D(E)\nabla^2\left(\frac{dn_e}{dE}(E,\vec{r})\right) + \frac{\partial}{\partial E}\left(b(E)\frac{dn_e}{dE}(E,\vec{r})\right) + Q_{\chi}(E,\vec{r}) = 0.$$

- Diffusion term: $D(E) = D_0 (E/\text{GeV})^{\gamma}$ where $D_0 = 3 \times 10^{28} \text{ cm}^2 \text{s}^{-1}$, $\gamma = 0.7$.
- Energy loss term for synchrotron loss: $b_{\rm Synch} \propto \left(\frac{E}{\rm GeV}\right)^2 \left(\frac{B}{\mu G}\right)^2$ with $B = 1 \,\mu G$.
- DM source term: $Q_{\chi}(E, \vec{r}) = \frac{\Gamma}{m_{\chi}} \sum_{f} B_{f} \frac{dN_{f}^{e^{+}}}{dE}(E)\rho_{d}(\vec{r})$ where $\rho_{d}(\vec{r})$ is Einasto profile.
- Radio flux:

$$S_{\nu}(\nu) = \frac{1}{4\pi} \int_{\Delta\Omega} d\Omega \int_{I.o.s} ds \left(2 \int_{m_e}^{m_{\chi}/2} dE \frac{dn_e}{dE}(E, r(s, \Omega)) P_{\text{Synch}}(\nu, E, B) \right)$$

SKA detectability criteria

- Both S^{max}_ν and S^{min}_ν lie above the SKA sensitivity curve in at least one bin
 ⇒ (m_χ, Γ) point is detectable for all possible BR combinations.
- Only S_{ν}^{\max} lies above the sensitivity curve in at least one bin, but S_{ν}^{\min} lies below the sensitivity curve in all bins \Rightarrow Detectable for certain specific BR combinations.
- Both S_{ν}^{\max} and S_{ν}^{\min} lie below the sensitivity level \Rightarrow Non-detectable.
- When $\nu \bar{\nu}$ channel is included, $m_{\chi} \lesssim a$ few hundreds of GeV, S_{ν}^{\min} is negligibly small for all values of Γ .

SKA Projections: effects of $\nu\bar{\nu}$

• Left panel: $BR(\chi \rightarrow \nu \bar{\nu}) = 50\%$

- BR independently detectable even for $m_\chi \lesssim$ a few hundreds of GeV.

• Right panel: $BR(\chi \rightarrow \nu \bar{\nu}) = 100\%$

- Radio fluxes from the $\nu\bar{\nu}$ channel are non-detectable for $m_\chi\lesssim$ a few hundreds of GeV.

(日) (同) (三) (三)