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June 29, 2022

1 / 23



Introduction

• One of the greatest success of field theory is to formulate effective theories from Gravity
to particle physics or condensed matter theories. Both classically as well as on
microscopic scale.

• One such effective field theory describing the dynamics of the universe is ΛCDM model.

• ΛCDM is phenomenological model in which about 95% of the energy budget of the
universe is in the dark sector.

• There are various field theory models to describe the dark matter sector, the remaining
69% in the dark energy (DE) sector is described by the cosmological constant Λ.

• Λ not only suffers from cosmological constant problems, but also a coincidence problem.

• Replace Λ with an Effective Field Theory (EFT) description, typically captured by
additional dynamical scalar fields. This has motivated the class of scalar-tensor field
theories, which govern the gravity and DE sector of the cosmological models.
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The Probe:

• The present local H0 determinations currently fall in a window between H0 ∼ 70
km/s/Mpc (TRGB) and H0 ∼ 76 km/s/Mpc (Tully-Fisher).

• BAO data calibrated in an early ΛCDM universe are largely consistent with
Planck-ΛCDM, H0 ∼ 67.5 km/s/Mpc.

• This biasing of local H0 determinations to larger values can be a game changer for the
traditional DE paradigm.

• The bottomline boils down to DE models satisfying the Null Energy Condition,
1 + wDE ≥ 0, which encompass a large class of Effective Field Theories (EFTs) (but, by
no means all!), cannot perform better than Λ when it comes to recovering local H0

determinations.
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Conclusion:

• Working in a model independent expansion in powers of redshift z , we show that
Brans-Dicke/f (R) and Kinetic Gravity Braiding models within the Horndeski class can
lead to marginal and modest increases in H0, respectively. We confirm that as far as
increasing H0 is concerned, no DE EFT model can outperform the phenomenological two
parameter family of the DE models. Evidently, the late universe may no longer be large
enough to accommodate H0, BAO and DE described by EFT.
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The EFT’s under consideration

The Model:

L = G2(φ,X ) + G3(φ,X )�φ+ G4(φ)R, X := −1

2
∂µφ∂

µφ,

Examples

Classifications:

Class Gi (φ,X )

Quintessence G2 = X − V (φ),G3 = 0,G4 = 1
2M

2
pl

K-essence G2 = G2(φ,X ),G3 = 0,G4 = 1
2M

2
pl

Brans-Dicke/f (R) gravity G2 = G2(φ,X ),G3 = 0,G4 = G4(φ)

Kinetic Gravity Braiding G2 = G2(φ,X ),G3 = G3(φ,X ),G4 = 1
2M

2
pl
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Quintessence & K-essence

• Quintessence models and K-essence models predict lower values of H0 relative to Λ.

• These are at odds with local H0 determinations. It is fair enough to rule out these models
as viable late-time DE EFTs.

• However all of these models can be reconsidered as early dark energy models , but this
does not alter the conclusion that, even in such a scenario, Λ is expected to maximise H0

over the simplest EFTs in the Horndeski class.
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Non-minimal coupling

Quintessence sector

G2(φ,X ) = X − V (φ), redefine F (φ) = 2G4(φ).

Assumption

F (φ) is an analytic function

• Evolution in F (φ) translates into an evolution in Newton’s constant G . Currently,
observations are largely consistent with no evolution, whether it be constraints in the
solar system from lunar laser ranging Ġ/G0 = (7.1± 7.6)× 10−14 yr−1 , or constraints
from the Big Bang nucleosynthesis (BBN), GBBN/G0 = 0.98± 0.06 , where G0 denotes
the value of Newton’s constant today.
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• The scalar φ in redshift z r below z = 1 - about its value today φ0, one can also expand
the Quintessence potential provided the displacement in the scalar is also small,
|φ− φ0| < 1.

Scalar Potential

φ = φ0 + αz + βz2 + γz3 + . . . ,

V (φ) = V0 + V1 (φ− φ0) + V2 (φ− φ0)2 + . . . ,

Expansion

H(z) = H0(1 + h1z + h2z
2 + h3z

3 + . . . ),

F (z) = 1 +
F1

H0
(z − 1

2
(1 + h1) z2 +

1

3

(
1 + h1 + h2

1 − h2

)
z3

−1

4

(
1 + h2

1 + h3
1 − h2 + h1 − 2h1h2 + h3

)
z4 + . . .

)
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• Now given the perturbative expansion of the fields we can solve the Friedman equations

Friedmann Eqns

3FH2 = ρm +
1

2
φ̇2 + V − 3HḞ ,

−2FḢ = ρm + φ̇2 + F̈ − HḞ ,

0 = φ̈+ 3Hφ̇+ ∂φV − 3
(
Ḣ + 2H2

)
∂φF ,

V0

H2
0

= 3 (1− Ωm)− 1

2
α2 − 3

F1

H0
,

V1

H2
0

= −1

2
α3 − 2β + 2α− 3

2
αΩm +

1

2α

F1

H0

(
12− 4α2 − 9Ωm

)
− 3

2α

F 2
1

H2
0

,

h1 =
1

2
α2 +

3

2
Ωm +

1

2

F1

H0
,

h2 =
1

8
α4 +

1

4
α2 + αβ +

3

8
Ωm (4− 3Ωm)− 1

8

F1

H0

(
2 + α2 + 9Ωm

)
− 1

4

F 2
1

H2
0
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DE EOS

wDE(z) = −1 +

(
α2 + F1H

−1
0

)
3Ωφ0

+
z

Ω2
φ0

[
α4

3
(Ωφ0 − 1) +

α2

3
Ωφ0 (5− 3Ωφ0) +

4

3
αβΩφ0

−
(
α2

6
(4− Ωφ0) +

1

2
Ωφ0 (1− Ωφ0)

)
F1

H0
−

(2 + Ωφ0)

6

F 2
1

H2
0

]
+ O

(
z2
)

where Ωφ0 := 1− Ωm
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Figure: 9,675 fits to mock data and the resulting ∆H0 between the non-minimally coupled model and flat
ΛCDM versus wDE(z = 0) for the non-minimally coupled model. Blue separates models with ∆H0 > 0 from
models with ∆H0 < 0 in red.
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• One relevant question is whether a non-minimal coupling to gravity can help alleviating
H0 tension?

• The non-minimal coupling F (φ) varies linearly with cosmic time subject to a recent BBN
constraint .

• The slope F1 contributes to the Hubble parameter in a conflicted manner; if F1 flattens
the slope of the Hubble parameter at leading order in redshift z , it increases the slope at
subleading order. For this reason, one would expect increases in H0 due to linear
evolution of F (φ) with cosmic time to be marginal, and this is indeed what we found.

• Finally, we note that increasing H0 requires Ḟ > 0 (F1 < 0), which implies the Newton’s
constant must decrease in the late universe .
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Kinetic Gravity Braiding

KGB

L = 1
2R + K (φ,X ) + G (φ,X )�φ

• Note that the above Lagrangian gives a family of KGB models with different choices of K
and G .
• For simplicity we choose the following parametrization

KGB Model

K = X − V (φ)

G (φ,X ) = g1X + g2 (φ− φ0)X + g3X
2, gi’s constant parameters.

• The EOM may be expressed as,

3H2 = ρm +
1

2
φ̇2 + V (φ)− φ̇2

(
3Hφ̇G,X − G,φ

)
,

− 2Ḣ = ρm + φ̇2
(

1 + 2G,φ + G,X (φ̈− 3Hφ̇)
)
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• For any given G (φ,X ) the KGB class of Horndeski theories is free of instabilities if the
following conditions are met

Stability Constraints:

1 + 2G,φ − H2(1 + z)2 (φ′)2 G,φX − 2H(1 + z) [H ′(1 + z)φ′ + Hφ′ + H(1 + z)φ′′]G,X
+4H2(1 + z)φ′G,X − 1

2H
4(1 + z)4 (φ′)4 G 2

,X > 0

1 + 2G,φ + H2(1 + z)2 (φ′)2 G,φX + 6H2(1 + z)φ′G,X + 3
2H

4(1 + z)4 (φ′)4 G 2
,X > 0
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O(z)

• We can solve the dynamics of the model in a perturbative expansion in z and we present
few of these solutions

V0H
−2
0 = 3 (1− Ωm)− 1

2
α2
(
1 + g2H

2
0α

2
)
− 6(1−∆)

h1 =
1

2
α2
(
1 + g2H

2
0α

2
)

+
3

2
Ωm +

(1−∆)

2∆

(
α2
(
1 + g2H

2
0α

2
)

+ 4
β

α
+ 8 + 3Ωm

)
where ∆ := 1− 1

2g1H
2
0α

3 − 1
2g3H

4
0α

5.
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O(z2)

V1H
−2
0 = −1

2
α3 − 2β + 2α− 3

2
αΩm −

1

2
g2α

2H2
0

(
3α3 + α (6Ωm + 4) + 8β + 2g2α

5H2
0

)
− (1−∆)

2α2∆

[
α3 (3Ωm + 26) + 4α2β − 6α (26∆− 9Ωm − 24)− 24β(∆− 3) + 2α9g2

2H
4
0 + 3α7g2H

2
0

+α5
[
1 + 2g2H

2
0 (3Ωm + 17)

]
+ 8α4βg2H

2
0

]
h2 =

1

8
α4 +

1

4
α2 + αβ +

3

8
Ωm (4− 3Ωm) +

g2H
2
0α

3

8

[
5α3 + 4g2H

2
0α

5 + 20β + α (14 + 9Ωm)
]

+
(1−∆)

8α2∆3

[
2α4

(
∆2 + 3∆ + 6Ωm + 16

)
+ 4α3β

(
2∆2 + 3∆ + 4

)
+ 32β2

(
−∆2 + ∆ + 1

)
+ α2

[
∆2
(
−9Ω2

m + 12Ωm − 80
)
−∆

(
9Ω2

m + 30Ωm + 16
)

+ 2 (3Ωm + 8)2
]

+ 4α
[
β
(
−16∆2 + 3∆Ωm + 14∆ + 12Ωm + 32

)
+ 6γ∆2

]
+ 2α10

(
2∆2 + 2∆ + 1

)
g2

2H
4
0

+ α8
(
5∆2 + 5∆ + 4

)
g2H

2
0 + 4α5β

(
5∆2 + 6∆ + 4

)
g2H

2
0

+α6
(
∆2 + ∆ + 2 + g2H

2
0

(
∆2 (9Ωm + 14) + ∆ (9Ωm + 30) + 4 (3Ωm + 8)

))]
.
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DE EOS

wDE = −1 +
φ̇2
(

1 + 2G,φ + [φ̈− 3Hφ̇]G,X
)

φ̇2

2 + V − φ̇2
(

3Hφ̇G,X − G,φ
)

= −1 +
1

3 (1− Ωm)

[
α2
(
1 + g2H

2
0α

2
)

+
(1−∆)

∆

(
α2
(
1 + g2H

2
0α

2
)

+ 4
β

α
+ 8 + 3Ωm

)]
+ O(z)
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Figure: These plots depict how much one can increase H0 as we move in the parameter space of perturbative
KGB model.
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Figure: Increases in H0 versus wDE(z = 0) for the KGB model. The stable configurations in magenta explore a
restricted parameter space leading to less pronounced increases in H0.
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• The cosmological data including BAO restricts late universe modifications within Einstein
gravity to central values below H0 = 70 km/s/Mpc. Concretely, we found that
X -dependent contributions to the braiding function G (φ,X ) alleviate H0 tension in a
meaningful way compared to models with non-minimal coupling.

• This difference can be traced analytically to the fact that any X n, n > 0 ∈ N,
contribution to G (φ,X ) can coherently flatten H(z) at both leading and subleading order
in z for a sizable class of Quintessence models. As we have shown, this leads to tangible
increases in H0 that correlate well with a phantom EoS at z = 0, wDE(z = 0) < −1.
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Concluding Remarks

• Finally, while still less significant than the H0 tension, there are other cosmological
tensions, viz S8.

• The lore is that late DE models which alleviate H0 typically exacerbate S8. It is
reasonable to expect that the S8 considerations should only strengthen our results here
that the DE EFT framework is less likely to hold the answer to the cosmic tensions, but
one is always free to venture theoretically beyond EFT.

• In the big picture, if attempts to alter the BAO scale through EDE or equivalent are
discredited one is confronted with a Λ that does not appear to admit an EFT description.
If confirmed, this in itself is an extremely profound insight into the cosmological constant
Λ.
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Thank you
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Backup

• Cosmological tension and anomalies in anisotropic universe.

• Dynamically generate the anisotropy.

• Bianchi (1&7)classifications

Lagrangian

L =
√
−g
[
R − 1

2
∇µφ∇µφ− V (φ)− 1

4
FµνF

µν − Θφ

4
Fµν F̃

µν

]
+ LPF, (1)

• We have shown the attractor flow generated flows to table FRW metric. The anisotropy
is generated dynamically.

• Expanding in spherical harmonics can generate what cosmologist call the sky map.
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