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What we talk about when we talk about non-Riemannian

Riemannian geometry is characterised by a non-degenerate (i.e. invertible) metric structure:

g
µλ
gλν = δ

µ
ν

Non-Riemannian geometry is characterised by a degenerate (i.e. non-invertible) metric structure:

KµνY
ν = 0 , H

µν
Xν = 0 , XµY

µ = 1 , H
µλ
Kλν = δ

µ
ν − Y µXν

Some examples of non-Riemannian geometries in Nature include:

Condensed matter , Effective field theories , (fractional) Quantum Hall effect

Hydrodynamics , BMS group , Fractons , Double Field Theory

Non-Riemannian geometries provide the natural geometric underpinning of non-relativistic theories

(c→∞) or ultra-relativistic theories (c→ 0) but can also be used to better understand particular

sectors of usual (relativistic) theories.

In this talk, we will apply non-Riemannian geometries to the singularity problem in GR.
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Singularities in General Relativity
The notion of singularities in GR can be unfolded according to the following layers:

1 coordinate singularity

2 curvature singularity

3 geodesic incompleteness

Example (Schwarzschild metric):

ds
2 = −

(
1−

2M
r

)
dt

2 +
dr2(

1− 2M
r

) + r
2
dθ

2 + r
2 sin2

θ dφ
2

1 The Schwarzschild coordinates admit two singularities, at r = 2M and r = 0.

Changing the time coordinate to v = t+ r∗ where:

r∗ := r + 2M ln
∣∣ r

2M
− 1
∣∣ stands for the tortoise coordinate satisfying

dr∗

dr
=
(

1−
2M
r

)−1

allows to reexpress the Schwarzschild metric in the ingoing Eddington–Finkelstein coordinates:

ds
2 = −

(
1−

2M
r

)
dv

2 + 2 dvdr + r
2 sin2

θ dφ
2

Although the temporal term goes to zero at r = 2M , this metric is still regular there since the

off-diagonal term in the metric is non-zero and ensures that the metric is invertible.

⇒ The region r = 2M thus corresponds to a coordinate singularity.
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2 Although the Ricci scalar vanishes (R = 0), the Kretschmann scalar

RµνρσR
µνρσ =

48M2

r6 diverges at r → 0.

The determinant det g = −r4 sin2 θ vanishes at r = 0, so that the metric is not invertible there.

⇒ There is a genuine curvature singularity at r = 0.

Contrarily to the case r = 2M , the latter is not an artifact of the coordinate system and hence

cannot be removed by coordinate transformation.
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Singularities in General Relativity
The notion of singularities in GR can be unfolded according to the following layers:

1 coordinate singularity

2 curvature singularity

3 geodesic incompleteness

Example (Schwarzschild metric):

ds
2 = −

(
1−

2M
r

)
dt

2 +
dr2(

1− 2M
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) + r
2
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3 There are geodesics which have bounded proper time only, i.e. they reach the singularity at

r = 0 after finite proper time.

⇒ The Schwarzschild metric is geodesically incomplete.



Double Field Theory (DFT)
The DFT action reads

SDFT =

∫
d

2D
X e
−2dR(H, d)

where the generalised Ricci scalarR(H, d) is the unique O(D,D) scalar built in terms of second

derivatives of the fundamental O(D,D) variablesH and d.

Substituting into the O(D,D) variables the Riemannian parameterisation:

O(D,D) dilaton e
−2d =

√
−ge−2φ

Generalized metric HAB =

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
=

(
1 0

B 1

)(
g−1 0

0 g

)(
1 −B

0 1

)
yields the universal spacetime low-energy action for the closed string massless (NS-NS) sector

(φ, gµν , Bµν) ubiquitous in all string theories:∫
dDx

√
−g e−2φ

(
Rg + 4∂µφ∂µφ− 1

12HλµνH
λµν
)

where H = dB

The action is invariant under the doubled diffeomorphisms:

(Undoubled) Diffeomorphisms: δξgµν = Lξgµν , δξBµν = LξBµν , δξφ = Lξφ

B-gauge transformations: δΛBµν = ∂µΛν − ∂νΛµ
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Summary of this talk
The stringy geometry of DFT can accommodate not only Riemannian geometries

but also non-Riemannian ones K.M, J-H Park 17’.

What may appear as genuine singularities in conventional GR geometries can be recast as regular

DFT geometries with a non-Riemannian sector.

Specifically, we exhibit a class of supergravity spacetimes featuring genuine curvature singularities in

Riemannian geometry, for which we prove that:

The corresponding DFT generalised metric can be made regular via a suitable use of doubled

diffeomorphisms.

The corresponding O(D,D)-covariant curvature tensors are all regular, in contradistinction to

their Riemannian counterparts.

Regarding applications, we identify among this class physically relevant examples and show their

geodesic completeness:

D = 2 Black hole solution Witten 1991

D = 4 Spherical solution Burgess, Myers, Quevedo 1994

D = 10 Black 5-brane Horowitz, Strominger 1991
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Main ansatz
We focus on the following supergravity ansatz, with xµ = (t, y, zi):

Metric ds2 =
1

F (x)

(
−dt2 + dy2

)
+Gij(x)dzidzj

Kalb–Ramond field B(2) = ±
1

F (x)
dt ∧ dy +

1
2
βµν(x)dxµ ∧ dxν

Dilaton scalar e
−2φ = F (x)Ψ(x)

where Gij , βµν and Ψ are assumed to be regular.

The latter ansatz encompasses the previously mentioned examples and (hopefully) more.

The only source of singularity is therefore F → 0, which clearly features a coordinate singularity.

The determinant det g = −
detG
F 2 of the metric g is singular at F = 0.

Generically, the metric features a curvature singularity

R→∞ , RµνρσR
µνρσ →∞ whenever F → 0.
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The parameterisation of the generalised metricH depends of the spacetime point:

Riemannian at F 6= 0.

non-Riemannian at F = 0.

The GR limit Regular→ Singular is traded for the DFT limit Riemannian→ non-Riemannian.

The Kalb–Ramond field B(2) = ± 1
F dt ∧ dy + · · · plays a crucial rôle in regularisingH.

In particular, whenever ± 1
F dt ∧ dy is pure gauge, the curvature singularity of the GR metric is

eliminated through doubled diffeomorphisms, hence is a coordinate singularity in DFT.
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The regularity of the O(D,D) fundamental variables ensure that the O(D,D)-symmetric

curvatures (generalised Ricci tensorRAB and scalarR) are regular, hence there is no trace of

curvature singularity.

The O(D,D) defining condition of the generalised metricHACHBDJCD = JAB ensures that

detH = 1, hence there is no trace of determinant singularity.

This suggests that the curvature singularities featured in the considered class of GR spacetimes are

artifacts of Riemannian geometry, and have no counterparts in DFT geometry.
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Geodesics
The notion of DFT geodesics for Riemannian generalised metrics agree with the conventional GR

one computed in the string frame. Since the DFT geometry is regular, we expect the null and timelike

geodesics associated with our supergravity ansatz to be complete.

Focusing on particular supergravity solutions, we verify that this is indeed the case:

D = 2 Black hole solution Witten 1991

D = 4 Spherical solution Burgess, Myers, Quevedo 1994

D = 10 Black 5-brane Horowitz, Strominger 1991

Additionally, it can be checked that the corresponding geodesic deviation remains regular:

D2ξµ

dλ2 = R
µ
νρσẋ

ν
ẋ
ρ
ξ
σ

Hence, despite featuring a curvature singularity, the physically measurable quantities of these

solutions remain finite.

From the general behavior of particles and strings on non-Riemannian backgrounds, we expect that:

geodesics freeze on non-Riemannian points F = 0

strings become chiral at F = 0
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Example (D = 2 black hole)
The D = 2 black hole solution from Witten 1991 reads:

ds2 =
dy+dy−

F (y+, y−)
and H = 0 with F = −1 +

y+y−

l2
=

F

|F |
e
−2φ

.

The latter solves the supergravity field equations with cosmological constant ΛDFT = −
2
l2

.

The Ricci scalar reads R = −
4
l2F

so that the hyperbola y+
y
− = l

2 is a curvature singularity.

Although the H-flux is trivial, we introduce a pure gauge B-field as B(2) = ±
1
F

dy+ ∧ dy−.

The resulting generalised metric is non-Riemannian regular on the hyperbola.

Timelike geodesics will never reach the non-Riemannian hyperbola while null ones may approach

only at past or future infinity (freezing).

Although certain components of the Riemann tensor diverge, the contraction with ẋ remain finite so

that the geodesic deviation
D2ξµ

dλ2 = R
µ
νρσẋ

ν
ẋ
ρ
ξ
σ is regular, with vanishing norm

∣∣D2ξ

dλ2

∣∣2 = 0.

One of
{
y+, y−

}
is chiral and the other anti-chiral on the non-Riemannian hyperbola.
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D2ξµ

dλ2 = R
µ
νρσẋ

ν
ẋ
ρ
ξ
σ is regular, with vanishing norm

∣∣D2ξ

dλ2

∣∣2 = 0.

One of
{
y+, y−

}
is chiral and the other anti-chiral on the non-Riemannian hyperbola.



Example (D = 2 black hole)
The D = 2 black hole solution from Witten 1991 reads:

ds2 =
dy+dy−

F (y+, y−)
and H = 0 with F = −1 +

y+y−

l2
=

F

|F |
e
−2φ

.

The latter solves the supergravity field equations with cosmological constant ΛDFT = −
2
l2

.

The Ricci scalar reads R = −
4
l2F

so that the hyperbola y+
y
− = l

2 is a curvature singularity.

Although the H-flux is trivial, we introduce a pure gauge B-field as B(2) = ±
1
F
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Example (D = 10 black 5-brane)
We focus on the particular D = 10 black 5-brane geometry from Horowitz, Strominger 1991:

ds2 =
−dt2 + dr2

F (r)
+ r

2dΩ2
3 + d~x 2 and H = 0 where F = 1−(rc/r)2 = e

−2φ
.

The Ricci scalar diverges both at r = 0 and r = rc as R = −
4r4
c

r4(r2 − r2
c)

.

Although the H-flux is trivial, we introduce a pure gauge B-field as B(2) = ±
1

F (r)
dt ∧ dr.

The resulting generalised metric is non-Riemannian regular on the 3-sphere of the radius r = rc

(but still singular at r = 0).

In fact, one can show that the non-Riemannian sphere forms the boundary of a geodesically

complete space F > 0 which excludes the dangerous point r = 0.

More precisely, time-like and non-radial null geodesics cannot reach the non-Riemannian sphere.

Only the radial null ones can, albeit taking infinite affine parameter with vanishing proper velocities.

Moreover, the geodesic deviation is regular with vanishing norm, the only nontrivial values of

Rµνρσẋ
ν ẋρ at r = rc being ±2E2

/r
2
c for µ, σ being t or r.

One of
{
y+, y−

}
is chiral and the other anti-chiral on the non-Riemannian 3-sphere.



Summary
Exploring the non-Riemannian sector of DFT allows to go beyond supergravity and to accommodate

nonrelativistic physical theories (Gomis–Ooguri, Newton–Cartan, Carroll, etc. ) as well as to shed

new light on issues within GR.

We identify a class of singular supergravity spacetimes as regular DFT geometries by re-analysing

the three layers of singularities from a DFT perspective:

1 coordinate singularity: The curvature singularity of Riemannian geometry appears as a

coordinate singularity within DFT which can be removed by doubled diffeomorphisms.

2 curvature singularity: All DFT curvature tensors are regular, as a consequence of the

regularity of the generalised metric and dilaton field.

3 geodesic incompleteness: Focusing on particular known supergravity solutions, it is shown

that the non-Riemannian points F = 0 form an impenetrable sphere where particles freeze

and strings become chiral. Computed in the string frame, geodesics outside the

non-Riemannian sphere are complete with no singular deviation.

Relying on the geometry of DFT allows to address the singularity problem for this class already at the

classical level (no α′-expansion required).

Thank you for your attention!
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Appendix



Gravitation and Geometry
Following the paradigmatic example of General Relativity, one can distinguish between two facets of

gravitation theories:

A kinematical content encoding the geometry of the theory (in turn prescribing the motion of test particules, etc. )

Differential geometry

Metric structure

Parallelism

Differential geometry Metric structure Parallelism

(Lie) LX , [·, ·]Lie gµν Γλµν

A dynamical content encoding the dynamics of the geometry (as prescribed by the matter/energy content).

Einstein Field equations
µ, ν ∈ {1, . . . , D}

Gµν = 8πGTµν

There are many options to modify GR e.g. :

Modify the (Riemannian) geometry of General Relativity by replacing the non-degenerate metric

structure gµν with a degenerate (non-Riemannian) one cf. N. Obers talk on Wed and Fri talks

Newton–Cartan geometry (non-relativistic physics c→∞) hµνψν = 0

Carrollian geometry (ultra-relativistic physics c→ 0) γµνξ
ν = 0



Gravitation and Geometry
Following the paradigmatic example of General Relativity, one can distinguish between two facets of

gravitation theories:

A kinematical content encoding the geometry of the theory (in turn prescribing the motion of test particules, etc. )

Differential geometry

Metric structure

Parallelism

Differential geometry Metric structure Parallelism

(Lie) LX , [·, ·]Lie gµν Γλµν

A dynamical content encoding the dynamics of the geometry (as prescribed by the matter/energy content).

Einstein Field equations
µ, ν ∈ {1, . . . , D}

Gµν = 8πGTµν

There are many options to modify GR e.g. :

Modify the underlying differential geometry to a stringy geometry: Double Field Theory



Double Field Theory (DFT)
Stringy geometry:

Spacetime is doubled xA = (x̃µ, xµ) and ∂A = (∂̃µ, ∂µ)
where A ∈ {1, . . . , 2D} and µ ∈ {1, . . . , D}

Spacetime is endowed with a canonical O(D,D) metric JAB =
(

0 1
1 0

)
.

Section condition ∂A∂A ∼ 0

Generalized Lie derivative (L̂XY )A = XB∂BY
A + (∂AXC − ∂CXA)Y C

C-bracket [X,Y ]AC := XB∂BY
A − Y B∂BXA + 1

2Y
B∂AXB − 1

2X
B∂AYB

up to the section condition

[
L̂X , L̂Y

]
∼ L̂[X,Y ]C

Fundamental objects of the theory are the DFT metricHAB and the dilaton d.

The Ricci calculus of General Relativity can be generalised to the semi-covariant calculus of DFT:

A semi-covariant connection ΓABC

A generalised Ricci tensorRAB

A generalised Ricci scalarR

Stringy geometry Metric structure Parallelism

(Courant) JAB , L̂X , [·, ·]C HAB , d ΓABC



Double Field Theory (DFT)
Stringy geometry:

The DFT action reads SDFT =

∫
d

2D
X e
−2dR(H, d)

where the generalised Ricci scalarR(H, d) is the unique O(D,D) scalar built in terms of second

derivatives of the fundamental O(D,D) variablesH and d.

The associated equations of motion can be unified into:

Einstein Double Field equations
A,B ∈ {1, . . . , 2D}

GAB = 8πGTAB



Double Field Theory (DFT)
Stringy geometry:

The DFT action reads SDFT =

∫
d

2D
X e
−2dR(H, d)

where the generalised Ricci scalarR(H, d) is the unique O(D,D) scalar built in terms of second

derivatives of the fundamental O(D,D) variablesH and d.

Substituting into the O(D,D) variables the Riemannian parameterisation:

O(D,D) dilaton e
−2d =

√
−ge−2φ

Generalized metric HAB =

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
=

(
1 0

B 1

)(
g−1 0

0 g

)(
1 −B

0 1

)
yields the universal spacetime low-energy action for the closed string massless (NS-NS) sector

(φ, gµν , Bµν) ubiquitous in all string theories:∫
dDx

√
−g e−2φ

(
Rg + 4∂µφ∂µφ− 1

12HλµνH
λµν
)

where H = dB

The action is invariant under the doubled diffeomorphisms:

(Undoubled) Diffeomorphisms: δξgµν = Lξgµν , δξBµν = LξBµν , δξφ = Lξφ

B-gauge transformations: δΛBµν = ∂µΛν − ∂νΛµ



Gravitation and Geometry
Since the inception of Einstein’s General Relativity, the interplay between geometry and gravitation

has become a truism of modern physics, as embodied by the famous aphorism:

“Spacetime tells matter how to move
Kinematical

. Matter tells spacetime how to curve.”
Dynamical

J.-A. Wheeler

Wheeler’s quote allows to distinguish between two facets of gravitation theories:

A kinematical content encoding the geometry of the theory (in turn prescribing the motion of test particules, etc. )

Generically, the kinematical content of a gravitational theory can be sliced

into three (hierarchized) layers, where each layer is supported by the ones above:

Differential geometry

Metric structure

Parallelism

A dynamical content encoding the dynamics of the geometry (as prescribed by the matter/energy content).



Light-speed review of GR
Focusing on the kinematical side of GR, we distinguish between three layers of geometry:

Differential geometry

Spacetime is a manifold M of dimension D = d+ 1, carrying natural differential geometric

notions such as: vector fields Γ (TM ), differential forms Ω•(M ), Lie bracket [·, ·]Lie,

Lie derivative LX , Cartan calculus etc. (relying on the Lie algebroid structure on TM ).
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notions such as: vector fields Γ (TM ), differential forms Ω•(M ), Lie bracket [·, ·]Lie,

Lie derivative LX , Cartan calculus etc. (relying on the Lie algebroid structure on TM ).

Metric structure

The fundamental object of GR is a metric tensor gµν being:

Symmetric i.e. gµν = gνµ

Non-degenerate i.e. invertible gµλgλν = δµ
ν

Of Lorentzian signature (−1,+1, · · · ,+1︸ ︷︷ ︸
D−1

).



Light-speed review of GR
Focusing on the kinematical side of GR, we distinguish between three layers of geometry:

Differential geometry

Spacetime is a manifold M of dimension D = d+ 1, carrying natural differential geometric

notions such as: vector fields Γ (TM ), differential forms Ω•(M ), Lie bracket [·, ·]Lie,

Lie derivative LX , Cartan calculus etc. (relying on the Lie algebroid structure on TM ).

Metric structure

The fundamental object of GR is a metric tensor gµν being:

Symmetric i.e. gµν = gνµ

Non-degenerate i.e. invertible gµλgλν = δµ
ν

Of Lorentzian signature (−1,+1, · · · ,+1︸ ︷︷ ︸
D−1

).

Parallelism

A notion of parallelism is given in the guise of a connection on M . Among all possible

connections, the Levi–Civita connection provides a canonical choice being uniquely determined by:

Metric compatibility i.e. ∇λgµν = 0

Torsionfreeness i.e. Γλ[µν] = 0.
⇒ Γλµν =

1
2
g
λρ
(
∂µgρν + ∂νgρµ − ∂ρgµν

)



Light-speed review of GR
As for the dynamical side of GR:

Given our fundamental field, the next step consists in writing (dynamical) equations of motion.

A convenient way to obtain equations of motion consists in deriving them from an action functional.

Since the square-root of the determinant of the metric tensor is a scalar density of weight 1:

Lξ
(√
−g
)

= ξ
µ
∂µ
(√
−g
)

+ ∂µξ
µ
√
−g = ∂µ

(√
−g ξµ

)
a convenient way to parametrise the action is as:

S =

∫
M

d
D
x
√
−gL(g)

where L(g) is a scalar tensor i.e. (δξ − Lξ)L(g) = 0.

This last condition strongly constrains the possible terms that can enter the action.

The most general scalar quantity L(g) built solely in terms of the metric and linear in the second

derivatives of g is the Ricci scalar R(g) associated to g. (Vermeil’s theorem, 1917).

This yields the Einstein–Hilbert action S =

∫
M

d
D
x
√
−g R(g)

with associated Einstein equations of motion Gµν = 8πGTµν (in the presence of matter/energy).



Supergravity
The universal spacetime low-energy action for the bosonic sector (gµν , Bµν , φ) of oriented closed

string theories reads:∫
dDx

√
−g e−2φ

(
R + 4 ∂µφ ∂µφ− 1

12HλµνH
λµν
)

with H = dB

where D = 10 or 26.

The corresponding equations of motion take the form:

Rµν −
1
4
HµρσHν

ρσ + 2∇µ∇νφ = 0 (Variation with respect to g)

1
2
∇ρHρµν −Hµνρ∇ρφ = 0 (Variation with respect to B)

R + 4 (2φ− ∂µφ ∂µφ)−
1
12
HλµνH

λµν = 0 (Variation with respect to φ).

The action is invariant under the following doubled diffeomorphisms:

Diffeomorphisms:

δξgµν = Lξgµν = ξλ∂λgµν + gµλ∂νξ
λ + gλν∂µξ

λ

δξBµν = LξBµν = ξλ∂λBµν + Bµλ∂νξ
λ + Bλν∂µξ

λ

δξφ = Lξφ = ξλ∂λφ

B-gauge transformations:

δΛgµν = 0

δΛBµν = ∂µΛν − ∂νΛµ

δΛφ = 0



Supergravity
The universal spacetime low-energy action for the bosonic sector (gµν , Bµν , φ) of oriented closed

string theories reads:∫
dDx

√
−g e−2φ

(
R + 4 ∂µφ ∂µφ− 1

12HλµνH
λµν
)

with H = dB

where D = 10 or 26.

Each term of the action is separately invariant under these symmetries hence the relative coefficients

are left unfixed by diffeomorphisms and B-field symmetry.

Athough non-manifest, the action enjoys an additional T-duality symmetry mixing (g,B, φ) in a

non-trivial manner.



Supergravity
The universal spacetime low-energy action for the bosonic sector (gµν , Bµν , φ) of oriented closed

string theories reads:∫
dDx

√
−g e−2φ

(
R + 4 ∂µφ ∂µφ− 1

12HλµνH
λµν
)

with H = dB

where D = 10 or 26.

Splitting the coordinates as xµ =
{
u, xi

}
and assuming that the coordinate u is an isometric

direction (i.e. ∂ugµν = ∂uBµν = ∂uφ = 0), the following transformation preserves the form of the

action:

gij 7→ gij −
guiguj − BuiBuj

guu
, g

ij 7→ g
ij
,

gui 7→
Bui

guu
, g

ui 7→ −Bujgji ,

guu 7→
1
guu

, g
uu 7→ guu − Bui gijBju ,

Bij 7→ Bij −
guiBuj − Buiguj

guu
, Bui 7→

gui

guu
,

det g 7→
det g
g2
uu

, φ 7→ φ−
1
2

ln guu



Supergravity
The universal spacetime low-energy action for the bosonic sector (gµν , Bµν , φ) of oriented closed

string theories reads:∫
dDx

√
−g e−2φ

(
R + 4 ∂µφ ∂µφ− 1

12HλµνH
λµν
)

with H = dB

where D = 10 or 26.

One can check that only the precise relative coefficients of the action allow for this transformation to

be a symmetry. This non-linear and (highly) non-manifest discrete symmetry of the action is known

as the Buscher transformation.

As we will see, the DFT formalism will allow to make this symmetry both linear and manifest.



Gravitation and Geometry
Since the inception of Einstein’s General Relativity, the interplay between geometry and gravitation

has become a truism of modern physics, as embodied by the famous aphorism:

“Spacetime tells matter how to move
Kinematical

. Matter tells spacetime how to curve.”
Dynamical

J.-A. Wheeler

Wheeler’s quote allows to distinguish between two facets of gravitation theories:

A kinematical content encoding the geometry of the theory (in turn prescribing the motion of test particules, etc. )

Generically, the kinematical content of a gravitational theory can be sliced

into three (hierarchized) layers, where each layer is supported by the ones above:

GR
Differential geometry Metric structure Parallelism

(Lie) LX , [·, ·]Lie gµν Γλµν

DFT
Stringy geometry Metric structure Parallelism

(Courant algebroid) JAB , L̂X , [·, ·]C HAB , d ΓABC



Gravitation and Geometry
Since the inception of Einstein’s General Relativity, the interplay between geometry and gravitation

has become a truism of modern physics, as embodied by the famous aphorism:

“Spacetime tells matter how to move
Kinematical

. Matter tells spacetime how to curve.”
Dynamical

J.-A. Wheeler

Wheeler’s quote allows to distinguish between two facets of gravitation theories:

A dynamical content encoding the dynamics of the geometry (as prescribed by the matter/energy content).

GR
Einstein Field equations

µ, ν ∈ {1, . . . , D}
Gµν = 8πGTµν

DFT
Einstein Double Field equations

A,B ∈ {1, . . . , 2D}
GAB = 8πGTAB



Non-Riemannian geometries
Geometry is not the privilege of relativistic physics.

As soon as 1923, E. Cartan proposed a geometrical reformulation of Newton’s theory of gravitation.

Modify the (Riemannian) geometry of General Relativity by replacing the non-degenerate metric

structure gµν with a degenerate (non-Riemannian) one.

Non-Riemannian geometries come in two (main) flavors:

Newton–Cartan geometry (non-relativistic physics c→∞) hµνψν = 0

Condensed matter , Effective field theories , (fractional) Quantum Hall effect

Hydrodynamics , Hořava-Lifshitz gravity , Galilean string , etc.

Carrollian geometry (ultra-relativistic physics c→ 0) γµνξ
ν = 0

BMS group , Null Hydrodynamics , Flat holography , Carrollian string , etc.

From the viewpoint of GR, any geometry featuring a degenerate metric is singular.

Nevertheless, these are well-defined as non-Riemannian geometries.



Stringy geometry
Spacetime is doubled

X
A = (x̃µ, xµ) and ∂A = (∂̃µ, ∂µ)

where A ∈ {1, . . . , 2D} and µ ∈ {1, . . . , D}.

The double spacetime is naturally endowed with a canonical O(D,D) metric JAB =
(

0 1
1 0

)
.

A further condition is imposed so that the fields of the theory only depend on half of the coordinates.

The so-called section condition or strong constraint reads

∂
A
∂A(·) := JAB∂A∂B(·) = 0

where (·) is a place holder for fields and gauge parameters of the theory as well as any products

between those. This implies that ∂A∂AΦ = 0 and ∂AΦ ∂AΨ = 0 for any field and gauge

parameter of the theory.

In terms of D coordinates, the section condition reads ∂µ∂̃µ(·) = 0.

The solution ∂̃µ(·) = 0 (i.e. all the fields are independent of the tilde coordinates x̃µ) is called the

supergravity frame.



Generalised Lie derivative
Similarly to differential geometry, one can define a stringy geometry avatar of the notion of Lie derivative.

The generalised Lie derivative on the tensorial density V A of weight ω(V ) along the vector field ξA

reads:
L̂ξV A := ξ

C
∂CV

A + (∂AξC − ∂CξA)V C + ω(V )∂CξCV A.

where doubled indices are raised and lowered with the O(D,D) metric J .

The generalised Lie derivative annihilates the O(D,D) metric J as well as the Kronecker delta i.e. :

L̂ξJAB = 0 , L̂ξJAB = 0 , L̂ξδAB = 0.

The generalised Lie derivative has a non-trivial kernel. Namely, any vector field of the form

ξ = J−1∂χ (i.e. ξA := ∂Aχ) is annihiliated as:

L̂J−1∂χV ∼ 0 for any χ, V.

As was the case in differential geometry, the generalised Lie derivative can be used to formulate an

operative definition of “O(D,D) tensoriality”:

A quantity T is O(D,D) tensorial if and only if (δξ − L̂ξ)T = 0.

Example:

Let V A be a O(D,D) vector field so that (δξ − L̂ξ)V A = 0.

Now, consider the partial derivative ∂AV B .

We compute (δξ − L̂ξ)(∂AV B) ∼ V C(∂A∂BξC − ∂ACξB) 6= 0.



C-bracket
The generalised Lie derivative satisfies the closure property

L̂X ◦ L̂Y T − L̂Y ◦ L̂XT ∼ L̂[X,Y ]CT

where [·, ·]C stands for the C-bracket of vector fields and is defined explicitly as:

[X,Y ]AC := X
B
∂BY

A − Y B∂BXA +
1
2
Y
B
∂
A
XB −

1
2
X
B
∂
A
YB .

The C-bracket is skewsymmetric and satisfies a deformed Jacobi identity:[
X, [Y, Z]C

]A
C

+
[
Y, [Z,X]C

]A
C

+
[
Z, [X,Y ]C

]A
C
∼ ∂AN(X,Y, Z)

with N(X,Y, Z) = 1
6

(〈
[X,Y ]C , Z

〉
+ cycl.

)
the Nijenhuis tensor.

The fact that the obstruction ∂AN(X,Y, Z) is of the form J−1∂χ (hence in the kernel of L̂)

ensures that the closure condition for generalised Lie derivatives is well-defined.



Classification of generalised metrics
Solutions to the defining equations of the DFT generalised metric:

HAB = HBA
Symmetric

, HACHBDJCD = JAB
O(D,D)

are classified by two non-negative integers (n, n̄) such that 0 ≤ n+ n̄ ≤ D.

The explicit form of the most general DFT metric is given by:

HAB =

(
Hµν −HµσBσλ + Y µ

i
Xiλ − Ȳ

µ
ı̄ X̄

ı̄
λ

BκρH
ρν +XiκY

ν
i − X̄

ı̄
κȲ

ν
ı̄ Kκλ − BκρHρσBσλ + 2Xi(κBλ)ρY

ρ
i
− 2X̄ ı̄(κBλ)ρȲ

ρ
ı̄

)

In matrix form:

HAB =

(
1 0

B 1

)(
H Yi(Xi)T − Ȳı̄(X̄ ı̄)T

Xi(Yi)T − X̄ ı̄(Ȳı̄)T K

)(
1 −B

0 1

)
where the metrics Hµν and Kµν are of rank D − (n+ n̄).
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where the metrics Hµν and Kµν are of rank D − (n+ n̄).

Symmetries: Hµν = Hνµ, Kµν = Kνµ, Bµν = −Bνµ

Kernels: Both H and K admit two kinds of zero eigenvectors, with i = 1, . . . , n and ı̄ = 1, . . . , n̄:

H
µν
X
i
µ = 0 , H

µν
X̄
ı̄
µ = 0 , KµνY

µ
i = 0 , Kµν Ȳ

µ
ı̄ = 0

Completeness: HµρKρν + Y µ
i
Xiν + Ȳ µı̄ X̄

ı̄
ν = δµν

Invariance: H is preserved by boosts Y µ
i
7→ HµνVνi , Ȳ µı̄ 7→ Hµν V̄νı̄

together with corresponding transformations of K and B.



Classification of generalised metrics
The explicit form of the most general DFT metric is given by:

HAB =

(
Hµν −HµσBσλ + Y µ

i
Xiλ − Ȳ
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κȲ

ν
ı̄ Kκλ − BκρHρσBσλ + 2Xi(κBλ)ρY

ρ
i
− 2X̄ ı̄(κBλ)ρȲ
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where the metrics Hµν and Kµν are of rank D − (n+ n̄).

Different choices of (n, n̄) yield different parameterisations of the DFT metric.

The (0, 0) case reproduces the Riemannian ansatz yielding supergravity.

For all other cases (i.e. n+ n̄ > 0), the induced metric structure is necessarily degenerate.

The DFT framework thus allows to go beyond supergravity by including non-Riemannian geometries.
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where the metrics Hµν and Kµν are of rank D − (n+ n̄).

Upon a generic (n, n̄) background:

Free particles freeze along the n+ n̄ non-Riemannian directions: Xiµ ẋ
µ = 0 , X̄ ı̄µ ẋ

µ = 0

Strings become

chiral along n directions: Xiµ ∂+x
µ(τ, σ) = 0

anti-chiral along n̄ directions: X̄ ı̄µ ∂−x
µ(τ, σ) = 0
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where the metrics Hµν and Kµν are of rank D − (n+ n̄).

The classification is point-wise, so that the (n, n̄)-type of a given generalised metric can vary

according to the spacetime point.

As shown in Cho, Park 19’ the (n, n̄)-type is not dynamically protected. However, the trace

HAA = 2 (n− n̄) remains invariant.

The minimal non-Riemannian deviation from (0, 0) is therefore (1, 1) which have been found to

accommodate nonrelativistic theories such as Gomis–Ooguri, Newton–Cartan, Carroll etc.
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From Lie to Courant
The previous relations differ from the usual differential geometry case and hence do not define

a Lie algebroid but rather constitute the defining equations of a Courant algebroid

(introduced by Liu, Weinstein and Xu 97’).

Conceptual shift from Lie algebroids to Courant algebroids:

“Nothing in���Biology Makes Sense Except in the Light of((((Evolution” (((
((((T. Dobzhansky (73’)

DFT Courant Algebroids K. Morand (21’)

As in the Lie algebroid case, the Courant structure underlying the stringy geometry of DFT

allows to define notions of connection, torsion, curvature, etc.



Field content of DFT
Recall that the universal gravitational massless sector ubiquitous in string theory (bosonic, heterotic,

Type II, closed sector of Type I) takes the form:

gµν : D-dimensional metric

Bµν : two-form field

φ: scalar dilaton field

These are not O(D,D)-tensors.

Since we are looking for an O(D,D) invariant theory, the fundamental fields are required to be

O(D,D) tensors with 2D dimensional indices A,B, . . .

gµν and Bµν are unified in the generalised metricHAB .

φ is combined with det g to yield a O(D,D) singlet dilaton density d.



Generalised metric
The generalised metricH is defined as a symmetric O(D,D) element i.e. satisfies the following

relations:
HAB = HBA

Symmetric
, HACHBDJCD = JAB

O(D,D)
.

Under the decomposition XA = (x̃µ, xµ), the generalised metric splits into:

HAB =
(
Hµν Hµλ
Hκν Hκλ

)
so that the defining conditions decompose as:

Hµν = Hνµ , Hµν = Hνµ , Hµν = Hνµ ,

H(µ
ρHν)ρ = 0 , Hρ(µHρν) = 0 , HµρHρν +HµρHρν = δ

µ
ν .

Assuming that the upper left blockHµν is non-degenerate, we may identify it as the inverse of a

Riemannian metric i.e. Hµν = gµν .

The remaining constraints are all solved by a skew-symmetric B-field (Bµν = −Bνµ) such that the

most general DFT-metric in this case takes the well-known form:

HAB =

(
gµν −gµσBσλ

Bκρg
ρν gκλ − BκρgρσBσλ

)
.



Generalised metric
The generalised Lie derivative of the DFT-metric takes the form:

L̂ξHAB = ξ
C
∂CHAB + (∂AξC − ∂CξA)HCB + (∂BξC − ∂CξB)HAC .

Under the decomposition XA = (x̃µ, xµ), defining ξA = (ξ̃µ, ξµ) and assuming ∂̃µ = 0, the latter

yields:

(L̂ξH)µν = LξHµν

(L̂ξH)µν = LξHµν + 2Hµλ∂[ν ξ̃λ]

(L̂ξH)µν = LξHµν + 2Hλν∂[µξ̃λ]

(L̂ξH)µν = LξHµν + 2Hµλ∂[ν ξ̃λ] + 2Hλν∂[µξ̃λ]

In the Riemannian parameterisation, this is equivalent to:

δgµν = Lξgµν

δBµν = LξBµν + 2 ∂[µξ̃ν].

The generalised metricH thus allows to combine (g,B) in an O(D,D) invariant manner

while the generalised Lie derivative recovers the symmetries of the supergravity action

as doubled diffeomorphisms.



DFT action
The DFT action reads SDFT =

∫
d

2D
X e
−2dR(H, d)

whereR(H, d) is called the generalised Ricci scalar and is the unique O(D,D) scalar

built in terms of second derivatives of the fundamental O(D,D) variablesH and d.

Explicitly, the generalised Ricci scalar takes the form:

R(H, d) := HAB
(

1
8
∂AHCD ∂BHCD +

1
2
∂
CHAD ∂DHBC − 4 ∂Ad ∂Bd+ 4 ∂A∂Bd

)
−∂A∂BHAB + 4 ∂AHAB∂Bd.

The variation of the DFT action with respect to the generalised metricHAB and dilaton d yields:

DFT vacuum equations RAB = 0 , R = 0.

Upon solving the section condition as ∂̃µ = 0 (supergravity frame) and plugging the Riemann ansatz

HAB =
(

gµν −gµσBσλ
Bκρg

ρν gκλ − BκρgρσBσλ

)
and e−2d =

√
−g e−2φ

we recover the supergravity action:

SDFT =

∫
dDx

√
−g e−2φ

(
R + 4 ∂µφ ∂µφ− 1

12HλµνH
λµν
)

with H = dB.
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The variation of the DFT action with respect to the generalised metricHAB and dilaton d yields:

DFT vacuum equations RAB = 0 , R = 0.

The Ricci calculus of General Relativity can be generalised to the semi-covariant calculus of DFT:

A semi-covariant connection ΓABC

A semi-covariant Riemann curvature SABCD

A generalised Ricci tensorRAB

A generalised Ricci scalarR

A generalised Einstein tensor GAB :

∇AGAB = 0 (divergenceless)

G[AB] 6= 0 (not symmetric)

GAB = 0 unifies both equations of motion

RAB = 0 , R = 0.



Symmetries of the DFT action
On top of the generalised diffeomorphism invariance, the action enjoys a global O(D,D) invariance:

h ∈ O(D,D) , X
A 7→ hB

A
X
B

, HAB(X) 7→ hA
C
hB

DHCD(hX) , d(X) 7→ d(hX).

Choosing h as a factorized T-duality transformation hAB(t) =
(
δij − tij tik

tlj δl
k − tlk

)
where t is

a D ×D matrix of the form t = diag(0 · · · 0︸︷︷︸
n−1

1 0 · · · 0).

We will denote u the nth-direction. The factorized T-duality transformation exchanges u and ũ i.e. :

X
A = (ũ, x̃i, u, xi)⇒ hB

A
X
B = (u, x̃i, ũ, xi).

Under the following assumptions:

1 Supergravity frame: ∂̃µ = 0 (i.e. ∂̃u = 0, ∂̃i = 0)

2 The direction u is an isometry (i.e. ∂u = 0)

the factorized T-duality transformation allows to recast the non-linear Buscher rules on (g,B, φ) as a

linear transformation onH and d.

The isometry condition is necessary for the transformed fields to satisfy ∂̃u = 0 and thus to land

inside the supergravity frame.



Summary
The stringy geometry of DFT possesses a firm algebraic underpinning provided by the underlying

O(D,D) Courant algebroid structure (J , L̂X , [·, ·]C).

The fundamental fields (HAB , d) of DFT are O(D,D) tensors. In the Riemannian

parameterisation, these unify the low-energy spectrum of closed string theories (gµν , Bµν , φ) as

well as the corresponding symmetries.

The symmetries of DFT allow to uniquely fix the dynamics of the fundamental O(D,D) fields

(HAB , d). In the Riemannian parameterisation, the corresponding action reproduces the universal

low-energy effective action of closed string theories, while making manifest the underlying T-duality

symmetry.

The Ricci calculus of General Relativity can be generalised to the semi-covariant calculus of DFT.

The latter allows to construct genuine tensorial quantities, including the generalised Einstein tensor

GAB forming the left (geometric) side of Einstein Double Field Equations (cf. Stephen’s talk).

Exploring the non-Riemannian sector of DFT allows to go beyond supergravity and to accommodate

nonrelativistic physical theories (Newton–Cartan, Carroll, Gomis–Ooguri, etc. ) as well as to shed

new light on well-known GR problems (cf. Miok’s talk).
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Thank you for your attention!


