Accelerating BHs and AdS/CFT

Nakwoo Kim (Kyung Hee Univ.) June 292022 CQUeST at Yeosu

General BHs

- Most general black hole solution, explicitly known in Einstein-Maxwell theory?
- M,Q,J: Mass, Charge, Angular Momentum?
- 7 parameters: Mass, E\&M charge, J, A, NUT, and cc

C-metric

- Revived recent interest, because related to new AdS/CFT duals from branes wrapped on cycles with puncture (can give holographic dual of Argyres-Douglas)
- Has been known for a long time: first discovered by Levi-Civita in 1917
- Called type C, in the classification terminology of Ehlers and Kundt in 1962
- Physical interpretation as a pair of accelerating took a long time: Kinnersley and Walker in 1970
- Modern analysis: Podolsky, Griffiths, Dias, Lemos (2003) etc

dS C-metric

dS C-metric

- A is acceleration parameter, m is mass, q is charge
- Note that F, G are quartic polynomials
- (-+++) signature requires $\mathrm{G}>0$; Consider interval between two roots to give a compact horizon

$$
\begin{equation*}
d s^{2}=[A(x+y)]^{-2}\left(-\mathcal{F} d t^{2}+\mathcal{F}^{-1} d y^{2}+\mathcal{G}^{-1} d x^{2}+\mathcal{G} d z^{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{F}(y)=-\left(\frac{1}{\ell^{2} A^{2}}+1\right)+y^{2}-2 m A y^{3}+q^{2} A^{2} y^{4} \\
& \mathcal{G}(x)=1-x^{2}-2 m A x^{3}-q^{2} A^{2} x^{4} \tag{2}
\end{align*}
$$

Infinity?

- $r=(A(x+y))^{-1}$ is radial coordinate $(\mathrm{A}>0)$
- Kretschmann scalar $\quad R_{\mu \nu \alpha \beta} R^{\mu \nu \alpha \beta}=\frac{24}{\ell^{2}}+\frac{8}{r^{8}}\left[6 m^{2} r^{2}+12 m q^{2}(2 A x r-1) r\right.$

$$
\begin{equation*}
\left.+q^{4}\left(7-24 A x r+24 A^{2} x^{2} r^{2}\right)\right] . \tag{7}
\end{equation*}
$$

- Polar angle : $d \theta=G^{-1 / 2} d x$, involving elliptic integral
- Deficit angle: cannot remove both at N / S by adjusting κ :

$$
\delta=2 \pi\left(1-(\kappa / 2) G^{\prime}\right), \phi=z / \kappa
$$

Uncharged case

- Let us consider $q=0$ for simplicity and illustrative purpose
- $G=1-x^{2}-2 m A x^{3}, \quad G^{\prime}=-2 x(1+3 m A x)$
- We want $G\left(x=-\frac{1}{3 m A}\right)=1-\frac{1}{27 m^{2} A^{2}}<0 ; x_{n}, x_{s} \quad\left(x_{n}>x_{s}\right)$

Uncharged case

. $F=-1-\frac{1}{\ell^{2} A^{2}}+y^{2}-2 m A y^{3} ; F^{\prime}=2 y(1-3 m A y)$

- $F\left(y=\frac{1}{3 m A}\right)=-1-\frac{\Lambda}{3 A^{2}}+\frac{1}{27 m^{2} A^{2}}$
- Range of $\mathrm{y}: ~ y>-x_{n}$, right panel is non-physical since the singularity is naked

A is acceleration

- Set $m=0, q=0$ (in fact dS vacuum), and consider transformation:
- The proper acceleration of a particle at $\rho=0$ is exactly A

$$
\begin{align*}
& \tau=\frac{\sqrt{1+\ell^{2} A^{2}}}{A} t, \quad \rho=\frac{\sqrt{1+\ell^{2} A^{2}}}{A} \frac{1}{y} \\
& \theta=\arccos x, \quad \phi=z \tag{19}
\end{align*}
$$

we can rewrite the massless uncharged dS C-metric as

$$
d s^{2}=\frac{1}{\gamma^{2}}\left[-\left(1-\rho^{2} / \ell^{2}\right) d \tau^{2}+\frac{d \rho^{2}}{1-\rho^{2} / \ell^{2}}+\rho^{2} d \Omega^{2}\right],(20)
$$

$$
\left|a_{4}\right|=\sqrt{a_{\mu} a^{\mu}}=\frac{\rho \sqrt{1+\ell^{2} A^{2}}+\ell^{2} A}{\ell \sqrt{\ell^{2}-\rho^{2}}}
$$

with $d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$ and

$$
\begin{equation*}
\gamma=\sqrt{1+\ell^{2} A^{2}}+A \rho \cos \theta \tag{21}
\end{equation*}
$$

$\mathrm{m}=0, \mathrm{q}=0$ is dS

- To see the global structure, we go back to the definition of dS as hyperboloid: $-z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=\ell^{2}$
- We obtain the metric (20), using the parametrization below

$$
\begin{align*}
& z^{0}=\gamma^{-1} \sqrt{\ell^{2}-\rho^{2}} \sinh (\tau / \ell), \quad z^{2}=\gamma^{-1} \rho \sin \theta \cos \phi \\
& z^{1}=\gamma^{-1} \sqrt{\ell^{2}-\rho^{2}} \cosh (\tau / \ell), \quad z^{3}=\gamma^{-1} \rho \sin \theta \sin \phi \\
& z^{4}=\gamma^{-1}\left[\sqrt{1+\ell^{2} A^{2}} \rho \cos \theta+\ell^{2} A\right] \tag{25}
\end{align*}
$$

Two BHs

- At the origin $\rho=0 \begin{aligned} & z^{2}=0, z^{3}=0, z^{4}=\ell^{2} A / \sqrt{1+\ell^{2} A^{2}}<\ell \quad \text { and } \\ & \left(z^{1}\right)^{2}-\left(z^{0}\right)^{2}=\left(A^{2}+1 / \ell^{2}\right)^{-1} \equiv a_{5}^{-2} .\end{aligned}$

(i) Non-extreme charged Black Hole

AdS C-metric

AdS C-metric

- Radial coordinate: $r=(A(x+y))^{-1}$
- Again obtain from positivity of G: $27 m^{2} A^{2}<1$

$$
\begin{equation*}
d s^{2}=[A(x+y)]^{-2}\left(-\mathcal{F} d t^{2}+\mathcal{F}^{-1} d y^{2}+\mathcal{G}^{-1} d x^{2}+\mathcal{G} d z^{2}\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{F}(y)=\left(\frac{1}{\ell^{2} A^{2}}-1\right)+y^{2}-2 m A y^{3}+q^{2} A^{2} y^{4} \\
& \mathcal{G}(x)=1-x^{2}-2 m A x^{3}-q^{2} A^{2} x^{4} \tag{4}
\end{align*}
$$

Large acceleration

- $A>1 / \ell$: Pair of accelerated BHs
- Acceleration is exactly A at origin

$$
\begin{align*}
& \tau=\frac{\sqrt{\ell^{2} A^{2}-1}}{A} t, \quad \rho=\frac{\sqrt{\ell^{2} A^{2}-1}}{A} \frac{1}{y}, \\
& \theta=\arccos x, \quad \phi=z, \tag{32}
\end{align*}
$$

we can rewrite the massless uncharged AdS C-metric as

$$
d s^{2}=\frac{1}{\gamma^{2}}\left[-\left(1-\rho^{2} / \ell^{2}\right) d \tau^{2}+\frac{d \rho^{2}}{1-\rho^{2} / \ell^{2}}+\rho^{2} d \Omega^{2}\right],(33)
$$

with $d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$ and

$$
\begin{equation*}
\gamma=\sqrt{\ell^{2} A^{2}-1}+A \rho \cos \theta \tag{34}
\end{equation*}
$$

As a hyperboloid

$$
\cdot-z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{4}^{2}=-\ell^{2}
$$

$$
\begin{aligned}
& z^{0}=\gamma^{-1} \sqrt{\ell^{2}-\rho^{2}} \sinh (\tau / \ell), \quad z^{2}=\gamma^{-1} \rho \sin \theta \cos \phi \\
& z^{1}=\gamma^{-1} \sqrt{\ell^{2}-\rho^{2}} \cosh (\tau / \ell), \quad z^{3}=\gamma^{-1} \rho \sin \theta \sin \phi \\
& z^{4}=\gamma^{-1}\left[\sqrt{\ell^{2} A^{2}-1} \rho \cos \theta+\ell^{2} A\right]
\end{aligned}
$$

Small acceleration

- $A \leq 1 / \ell$: Single accelerated BH
- Acceleration is exactly A at origin $\mathrm{R}=0$

$$
\begin{align*}
& T=\frac{\sqrt{1-\ell^{2} A^{2}}}{A} t, \quad R=\frac{\sqrt{1-\ell^{2} A^{2}}}{A} \frac{1}{y} \\
& \theta=\arccos x, \quad \phi=z \tag{47}
\end{align*}
$$

we can rewrite the massless uncharged AdS C-metric as

$$
\begin{equation*}
d s^{2}=\frac{1}{\eta^{2}}\left[-\left(1+R^{2} / \ell^{2}\right) d T^{2}+\frac{d R^{2}}{1+R^{2} / \ell^{2}}+R^{2} d \Omega^{2}\right] \tag{48}
\end{equation*}
$$

$$
\eta_{-}^{-1}=\sqrt{1-\ell^{2} A^{2}}+A R \cos \theta
$$

$$
\begin{align*}
& z^{0}=\eta^{-1} \sqrt{\ell^{2}+R^{2}} \sin (T / \ell), \quad z^{2}=\eta^{-1} R \sin \theta \cos \phi, \\
& z^{4}=\eta^{-1} \sqrt{\ell^{2}+R^{2}} \cos (T / \ell), \quad z^{3}=\eta^{-1} R \sin \theta \sin \phi, \\
& z^{1}=\eta^{-1}\left[\sqrt{1-\ell^{2} A^{2}} R \cos \theta-\ell^{2} A\right] . \tag{50}
\end{align*}
$$

Supersymmetric Accelerating AdS BH

- Minimal Gauged Supergravity in $\mathrm{D}=4$
- Plebanski and Demianski solution: "Rotating, charged, and uniformly accelerating mass in GR" (1976)

$$
\begin{aligned}
\mathrm{d} s^{2}=\frac{1}{H^{2}}\left\{-\frac{Q}{\Sigma}\left(\frac{1}{\kappa} \mathrm{~d} t-a \sin ^{2} \theta \mathrm{~d} \phi\right)^{2}\right. & +\frac{\Sigma}{Q} \mathrm{~d} r^{2} \\
& \left.+\frac{\Sigma}{P} \mathrm{~d} \theta^{2}+\frac{P}{\Sigma} \sin ^{2} \theta\left(\frac{a}{\kappa} \mathrm{~d} t-\left(r^{2}+a^{2}\right) \mathrm{d} \phi\right)^{2}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
P(\theta) & =1-2 \alpha m \cos \theta+\left(\alpha^{2}\left(a^{2}+e^{2}+g^{2}\right)-\frac{a^{2}}{\ell^{2}}\right) \cos ^{2} \theta \\
Q(r) & =\left(r^{2}-2 m r+a^{2}+e^{2}+g^{2}\right)\left(1-\alpha^{2} r^{2}\right)+\frac{r^{2}}{\ell^{2}}\left(a^{2}+r^{2}\right) \\
H(r, \theta) & =1-\alpha r \cos \theta \\
\Sigma(r, \theta) & =r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

and the gauge field is given by

$$
\begin{aligned}
A & =-e \frac{r}{\Sigma}\left(\frac{1}{\kappa} \mathrm{~d} t-a \sin ^{2} \theta \mathrm{~d} \phi\right)+g \frac{\cos \theta}{\Sigma}\left(\frac{a}{\kappa} \mathrm{~d} t-\left(r^{2}+a^{2}\right) \mathrm{d} \phi\right) \\
& =A_{t} \mathrm{~d} t+A_{\phi} \mathrm{d} \phi
\end{aligned}
$$

- parameters: m, e, g, a, α, ℓ and $\Delta \phi$
- Supersymmetry:

$$
\begin{aligned}
g & =\alpha m, \\
0 & =\alpha^{2}\left(e^{2}+g^{2}\right)\left(\Xi+a^{2}\right)-(g-a \alpha e)^{2} . \\
& \Xi \equiv 1+\alpha^{2}\left(a^{2}+e^{2}+g^{2}\right)-a^{2} .
\end{aligned}
$$

- Gives regular solution in $\mathrm{D}=11$: Ferrero et al 2012.08530
- Extremality: $a g^{2}(a \alpha e-g)(e+a \alpha g)+\alpha^{3} e^{2}\left(e^{2}+g^{2}\right)^{2}=0$

