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Motivation and outline

⇒ ΛCDM is a successful model

• Cosmological constant problem: why the value of CC is very small.
• Coincidence problem: why DE dominates at very recent redshift?
• Observational Anomalies: Hubble tension, S8 anomaly, and DESI observation.

⇒ Dynamical DE like, Quintessence, k-essence, proca field were introduced to address them.

⇒ Interacting dark energy and dark matter is introduced to address the coincidence problem.

⇒ Interacting dark energy and dark matter is shown to be successful to address H0, and S8 tension, as well as the DESI
observations.

⇒ There are many models of interacting DE and DM, some of which predict a suppressed Geff, potentially reducing
structure growth and addressing tension in large-scale observations.
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Motivation and outline

⇒ Can we formulate a theory agnostic interacting descrip-
tion of Dark sector?

⇒ The phenomenology can be approached either via phe-
nomenological parameterizations or by constructing a
unified EFT framework, which captures all allowed op-
erators consistent with symmetry principles.

⇒ Our EFT approach yields a well-defined, stable, and
predictive theory, providing explicit stability conditions
and controlled perturbation evolution, enabling mean-
ingful inference from the data.

EFT of
vector–tensor
nµ, g̃00, Fµ

Dust fluid
EFT
n, uµ

Interacting EFT operators:
Ln(g̃00) n, qµqµ, qµFµ
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EFT of vector tensor: Symmetry breaking pattern

We assume existence of preferred direction by timelike vector, vµ, which spontaneously break spacetime symmetry

vµ = ∂µ t̃+ gMAµ

t̃ is Stükelberg field associated with the U(1) transformation of the vector field Aµ, and gM is the gauge coupling.

Defining t̃ = t the time coordinate, the preferred vector is

vµ = δ̃0µ ≡ δ0µ + gMAµ .

The residual symmetries are

Combinet time and U(1) : t → t− gMχ , Aµ → Aµ + ∂µχ ,

Space(diff) : x⃗ → x⃗′(t, x⃗)

preferred vector ̸= preferred slicing
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EFT of vector tensor: Building blocks

Norm of the preferred vector

g̃00 = δ̃0µδ̃
0
νg

µν

We can define a time like vector

ñµ ≡
δ̃0µ√
−g̃00

, ñαñα = −1

Then a projection tensor can be defined

h̃µν = gµν + ñµñν .

The derivative of the preferred vector can have two
parts

∇µδ̃
0
ν =

ñν∇µg̃00

2
√

−g̃00
−
√

−g̃00∇µñν .

∇µñν ⇒ decomposed in to

K̃µν = h̃(µ|α∇αñ|ν) ,

ω̃µν = h̃[µ|α∇αñ|ν] ,

ãµ = ñα∇αñµ .

ñµ is not hypersurface orthogonal

K̃µν , ω̃µν , ãµ, specify the geometric properties of the preferred vector.
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EFT of vector tensor: Building blocks

For the gauge field Aµ, we have the field strength

Fµν = ∇µAν −∇νAµ

Decomposed in to

Electric : F̃µ ≡ ñαFµα ,

Magnetic : F̃µν ≡ h̃µαh̃νβFαβ .

We have the follow relation

ω̃µν = −
gM

2
√

−g̃00
F̃µν ,

ãµ =
gM√
−g̃00

F̃µ −
h̃αµ∂αg̃00

2g̃00
.

Hence ω̃µν , and aµ are redundant.

We can have derivative operator

D̃µTν...ρ... = h̃αµh̃νβ . . . h̃γρ∇αTβ...γ... .

Then the gauss equation can be written

h̃αµh̃βν h̃γρh̃δσRαβγδ = (3)R̃µνρσ + 2B̃[ρ|µB̃|σ]ν ,

B̃µν = K̃µν + ω̃µν .

Hence

(3)R̃µν = (3)R̃α
µαν ,

(3)R̃ = (3)R̃µ
µ = (3)R̃µν

µν ,

and

R = (3)R̃+ B̃µν B̃µν − K̃2 − 2∇µ(ãµ − K̃ñµ) .
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EFT of vector tensor: Building blocks

The EFT building blocks are

g̃00, (3)R̃µνρσ , F̃µν , F̃µ , K̃µν ,

Lñ , D̃µ , and gµν(or hµν)

The general action

The most general action in unitary gauge is

S =

∫
d4x LDE + Sm[ψ, g]

where
LDE = LDE

(
g̃00 , (3)R̃αβγδ , F̃µν , F̃µ , K̃µν ,Lñ , D̃µ

)
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With no transverse degrees of freedom

Without transverse mode, gauge field is

Aµ =
[
A0, ∂iA

]
We can use the residual gauge freedom of the
combined U(1) and time diff to set A = 0.

Then
Aµ =

[
A0, 0

]
.

In this case the temporal freedom is completely fixed
except the time reparameterization t → t′(t).

The vector ñµ coincide with the vector orthogonal to
the hypersurface, nµ.

Then

ñµ = nµ , D̃µ = Dµ , K̃µν = Kµν ,
(3)R̃αβγδ = (3)Rαβγδ .

The preferred vector

vµ = δ̃0µ = δ0µ + gMAµ = (1+ gMA0, 0).

The norm

g̃00 = δ̃0αδ̃
0
βg

αβ = (1+ gMA0)2 g00 .

Hence, the building blocks becomes

nµ, g̃00, Fµ , Kµν ,
(3)Rµν .
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Luminal EFT of Dark energy action

Using the above ansatz and considering the Luminal EFT of vector-tensor DE: cT = c, where c speed of light

LDE =
M2

∗
2
f(t)
[
(3)R+ KµνKµν − K2

]
− Λ̂(t)− ĉ(t)g̃00 − d(t)K

+
1
2
M̂4

2(t)

(
δg̃00

−g̃00BG

)2

−
1
2
M̄3

1(t)

(
δg̃00

−g̃00BG

)
δK+

1
2
γ1(t)FµFµ ,

In this case we have the following consistency conditions

˙̂Λ + 3Hḋ+ ˙̂cg̃00BG = 0 ,

2M̂4
2

d
N̄dt

ln(−g̃00BG) + 3M̄3
1Ḣ+ 2 ˙̂cg̃00BG = 0 ,

ḋ+
1
2
M̄3

1
d
N̄dt

ln(−g̃00BG) = 0 ,

ḟ = 0 .

Masroor C. Pookkillath • | • 8/23



Dark Matter action

Here we assume that that dust fluid is described by
three scalars

ϕi(t, x) , i = 1, 2, 3

these scalar fields can be understood as comoving
coordinates ϕi = xi.

Fluid is described by the invariance under volume
preserving diffs

ϕi → ϕ
′ i s.t. det∂ϕ

′ i

∂ϕi
= 1 .

the invariant building blocks are

n ≡
√

detgµν∂µϕi∂νϕj

uµ ≡ −
1
6
εijkϵ

µνρσ∂νϕ
i∂ρϕ

j∂σϕ
k .

In this formulation the current J µ ≡ nuµ conservation
is off-shell

∇µJ µ = 0

in the comoving gauge ϕi = xi

n =
√

detgij , uµ =
δ0µ√
−g00

SDM =

∫
d4x
√

−gLDM , LDM = −m̂cn , m̂c is a constant.
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Interacting action

Here are the basic ingredients from dark sectors

nµ, g̃00, Fµ︸ ︷︷ ︸
DE

, n, uµ︸ ︷︷ ︸
DM

.

The possible interactions are

Ln(g̃00)n , nµuµ , Fµuµ .

The first one is energy transfer, the second two are
momentum transfer.

Introducing U ≡ nµuµ, and qµ ≡ uµ + nµU .

Related by
qµqµ = −1+ U2

In comoving gauge

qµ =

(
0,

Ni√
N2 − NiNi

)
.

We use qµ instead of uµ, hence interactions are

qµqµ , qµFµ .
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Interacting action

Then the general interacting Lagrangian is given by

Lint = Ln(g̃00)n+ Lq2 (g̃
00)qµqµ + Lq·F(g̃00)Fµqµ + · · ·

= −∆Λ(t)−∆c(t)g̃00 −∆mc(t)n

+
1
2
∆M4

2(t)

(
δg̃00

−g̃00BG

)2

− m4
1(t)

δn
n̄

(
δg̃00

−g̃00BG

)
− m4

2(t)q
µqµ − m̄2

1(t)q
µFµ

+ · · · ,

where

∆Λ(t) = L̄ng̃00 n̄ g̃
00
BG , ∆c(t) = −L̄ng̃00 n̄ , ∆mc(t) = −L̄n ,

∆M4
2(t) = L̄ng̃00 g̃00 n̄ (g̃

00
BG)2 , m4

1(t) = L̄ng̃00 g̃
00
BG n̄ ,

m4
2(t) = −L̄q2 , m̄2

1(t) = −L̄q·F ,

and

δn = n− n̄(t) , Lng̃00 =
dLn

dg̃00
, Lng̃00 g̃00 =

dLng̃00

dg̃00
.
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EFT action for coupled Dark Energy and Dark Matter

Action

S =

∫
d4x
√

−g
(
LNL

D + L(2)
D

)
+ Sm ,

LNL
D =

M2
∗
2
f(t)
(
(3)R+ KµνKµν − K2

)
− Λ(t)− c̃(t)g̃00 − d(t)K− mc(t)n ,

L(2)
D =

1
2
M4

2(t)

(
δg̃00

−g̃00BG

)2

−
1
2
M̄3

1(t)

(
δg̃00

−g̃00BG

)
δK+

1
2
γ1(t)FµFµ

−m4
1(t)

δn
n̄

(
δg̃00

−g̃00BG

)
− m4

2(t)q
µqµ − m̄2

1(t)q
µFµ .

ρ̇c + 3Hρc = d
dt ln(mc)ρ̄c , ρc ≡ mcn̄c .
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Mapping

For the Horndeski case

LDM + Lint = −f1(t,X, Z)n+ f2(t,X, Z) .

where X = − 1
2∇µϕ∇µϕ, and Z = −uµ∇µϕ

The mapping for interacting coefficient

mc = f1 ,

m4
1 = −n̄

(
f1,XXBG +

1
2

√
2XBGf1,Z

)
,

m4
2 =

1
2

√
2XBG (f1,Z n̄− f2,Z) ,

gM = γ1 = m̄2
1 = 0 .

For GP theory

LDM + Lint = −f1(X̃, Z̃, Ẽ)n+ f2(X̃, Z̃, Ẽ) ,

X̃ = −AµAµ/2, Z̃ = Aµuµ, and Ẽ = −AµFµνuν .

The mapping

γ1 = 1 ,

mc = f1 ,

m4
1 = −n̄

(
f1,X̃X̃BG +

1
2

√
2X̃BG f1,Z̃

)
,

m4
2 =

1
2

√
2X̃BG

(
f1,Z̃ n̄− f2,Z̃

)
,

m̄2
1 = −

√
2X̃BG (f1,Ẽ n̄− f2,Ẽ) .

[A. De Felice, S. Nakamuara S. Tsujikawa- arXiv:2004.09384, MCP, K. Koyama-arXiv:2405.06565]
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EFT action in α- Basis

From the definition

δg̃00

−g̃00BG
=

δg00

−g00BG
−

2gM
(1+ gMA0)

δA0 , FµFµ = (n0∇iA0)(n0∇iA0) =
δij∇iδA0∇jδA0

a2N̄2 ,

qµqµ =
NiNi

N2 − NjNj ≃
NiNi

N̄2 , qµFµ =
n0Ni∇iδA0√
N2 − NjNj

≃
Ni∇iδA0

N̄2 .

We can write the Lagrangian as
L(2)

D = L(2)
ST + L(2)

δÂ0
,

where

L(2)
ST = 2M4

2

(
δN
N̄

)2
− M̄3

1
δN
N̄
δK− 2m4

1
δN
N̄
δn
n̄

− m4
2
NiNi

N̄2 ,

L(2)
δÂ0

=
1
2
(
∇iδÂ0∇iδÂ0 + g2effM

4
2δÂ

2
0
)

+

[
m̄2
1∇iNi

√
γ1N̄

+ geff

(
1
2
M̄3

1δK− 2M4
2
δN
N̄

+ m4
1
δn
n̄

)]
δÂ0 , geff ≡

2gMN̄√
γ1(1+ gMĀ0)

, δÂ0 ≡
√
γ1

N̄
δA0 .
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EFT action in α- Basis

After integrating out δÂ0, we can write the EFT action in real space,

S(2)
D =

∫
d4x
√

−gL(2)
D

=

∫
d4x N̄a3

[
2M4

2,eff

(
δN
N̄

)2
− M̄3

1,eff
δN
N̄
δK− 2m4

1,eff
δN
N̄
δn
n̄

− m4
2
NiNi

N̄2

−m̄4
1,eff

(∇iNi)2

N̄2 −
µ41
2

(
δn
n̄

)2
−
µ22
8
(δK)2 −

µ33
2
δK
δn
n̄

−
µ44
2
δK

∇iNi

N̄

+2µ55
δN
N̄

∇iNi

N̄
− µ56

δn
n̄

∇iNi

N̄

]
,

where

M4
2,eff ≡ (1− G)M4

2 , M̄3
1,eff ≡ (1− G) M̄3

1 , m4
1,eff ≡ (1− G)m4

1 ,

m̄4
1,eff ≡

Gm̄4
1

2γ1g2effM
4
2
, µ41 ≡ G

m8
1

M4
2
, µ22 ≡ G

M̄6
1

M4
2
, µ33 ≡ G

M̄3
1m

4
1

M4
2
,

µ44 ≡
GM̄3

1m̄
2
1√

γ1 geffM4
2
, µ55 ≡

Gm̄2
1√

γ1 geff
, µ56 ≡

Gm4
1m̄

2
1√

γ1 geffM4
2
, G ≡

g2effM
4
2

−∇i∇i + g2effM
4
2
.
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EFT action in α- Basis

As in the case of the EFT of uncoupled vector-tensor DE theories, we have three unified descriptions of the EFT of coupled
DE and DM:

1. geff ̸= 0, it corresponds to the EFT of coupled vector DE,

2. geff = 0, together with the consistency conditions, we obtain the EFT of coupled scalar DE in shift-symmetric
scalar-tensor theories,

3. geff = 0, without the consistency conditions, we have the EFT of coupled scalar DE in non-shift-symmetric
scalar-tensor theories.
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EFT action in α- Basis

Action in α- Basis

S(2) =

∫
d4x N̄a3

M2

2

[
δKµνδKµν − δK2 + δ2

(√
h

a3
(3)R

)
+
δN
N̄
δ(3)R− 6ΩcH2δ2

(√
h

a3
n
n̄

)

+H2α̃K

(
δN
N̄

)2
+ 4α̃BHδK

δN
N̄

+ (α̃m1 − 6Ωc)H2 δN
N̄
δn
n̄

+ αm2H
2 NiNi

N̄2

+α̃m̄1
(∇iNi)2

N̄2 + αµ1H
2
(
δn
n̄

)2
+ αµ2δK

2 + αµ3HδK
δn
n̄

−αµ4δK
∇iNi

N̄
− αµ5H

δN
N̄

∇iNi

N̄
− αµ6H

δn
n̄

∇iNi

N̄

]
+ S̃(2)

m ,

S̃(2)
m ≡ S(2)

m + δ2

∫
d4x N̄

√
h
(
δN
N̄
ρ̄m − p̄m

)
,
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Ghost conditions

N = N̄(t) , Ni = 0 , hij = a2(t)(δij + h̃ij) , h̃11 = −h̃22 = h+(t, z) , h̃12 = h̃21 = h×(t, z) .

Tensor modes

The action reduces to

S(2)
T =

∑
λ=+,×

∫ dtd3k
(2π)3

N̄a3
M2

4

(
|ḣλ|2 −

k2

a2
|hλ|2

)
,

where we have changed the action into Fourier space, and k is the Fourier mode.

Expected as we have focused on theories with the luminal speed of gravitational waves.

ḧλ + H (3+ αM) ḣλ +
k2

a2
hλ = 0 , αM ≡

2Ṁ
HM

.
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Ghost conditions

N = N̄(t) (1+ α) , Ni = N̄(t) (∂iχ) , hij = a2(t)
[
(1+ 2ζ)δij + 2∂i∂jE

]
.

Scalar modes

write the action in the form

S(2) =

∫ dtd3k
(2π)3

N̄a3
(

˙⃗X t
kK

˙⃗X−k − X⃗ t
kG̃X⃗−k −

k
a
X⃗ t
kB

˙⃗X−k

)
,

where

X⃗ t
k =

[
δc(k)
k

, ζ(k),
δm(k)
k

]
, and G̃ =

k2

a2
G+M .

K and G̃ are symmetric 3× 3 matrices and B is anti-symmetric matrix.
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Ghost conditions

High k limit

qc ≡
K11

a2
=

M2H2

2
(
3Ωc + αm2 − α2

m̄1

)
> 0 ,

qs ≡ K22 =
M2(6α2

B + α̃K)

2(1+ αB)2
> 0 ,

with the strong energy condition for the standard matter

ρ̄m(1+ ωm) > 0 .
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Speed of propagation

High k limit

c2s = ĉ2s +∆c2s ,

where

ĉ2s =
G22

K22
= −

1
(6α2

B + α̃K)

[
3Ωc + 3Ωm(1+ wm) + 2(1+ αB) (αB − αM − ϵH) +

2α̇B
H

−4α2
Bα

2
g + αm2 − α2

m̄1
− 4αgαBαm̄1

]
,

∆c2s =
B212

K11K22
=

(αm1 + 2αm2 − 2α2
m̄1

− 4αgαBαm̄1 )
2

4(3Ωc + αm2 − α2
m̄1
)(6α2

B + α̃K)
.

To avoid Laplacian instabilities
c2s > 0 .
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Effective gravitational coupling

Small-scale CDM evolution:

δ̈c + Cδ̇c − 4πGeffρ̄cδc ≃ 0

Damping coefficient:

C =
(5Hqc + q̇c)ν2s + (2b12ḃ12 + 5Hb212)νs − b212ν̇s

qcν2s + b212νs

Effective gravitational coupling:

Geff =
4µ11ν2s + 4g212νs −

[
3H2(7− 2ϵH)b212 + ḃ212

]
νs

16πρ̄c(qcν2s + b212νs)

−
2(b̈12 + 8Hḃ12 + 2ġ12 + 4Hg12)b12νs − 2(ḃ12 + 3Hb12 + 2g12)b12ν̇s

16πρ̄c(qcν2s + b212νs)

ΛCDM

Exact

Quasi-static

10-5 10-4 10-3 10-2 10-1 100

10-3

10-2

10-1

100

H0t

δ
c

r = 1

cs = 10
-1.5

k = 500 k0

k = 100 k0
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Summary & Future direction

Take-home message

• We successfully constructed interacting EFT of Dark
Energy and Dark Matter

• This Int-EFT can accommodate Vector-Tensor Dark
Energy, Scalar-Tenor Dark Energy (both shift symmetric
and non-shift symmetric)

• We derived the stability conditions that theory should
posses.

• We explored the phenomenological impact of the possible
interactions.

• With some interaction terms, we can find a possible
suppression for the growth of CDM ovedensity.

Future directions

EFT-param
Study the effect of in-
teractions with different
EFT α-parametrization.

Constraints
Parameter estimation with
cosmological data, CMB
and LSS.

Non-linear
Extending the formula-
tion to non-linear scales.
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Thank you!
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