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1. Introduction

No-hair (Kerr) hypothesis implies that the astrophysical black holes are
described by the Kerr family with mass(M) and angular momentum (/).

- So far, all observations are in agreement with the Kerr hypothesis.

1) Motion of stars around the supermassive black hole in the center
of our galaxy (2020 Nobel Prize: Penrose-Genzel-Ghez)

2) Observation of GWs from black hole mergers
(2017 Nobel Prize: Weiss-Barish-Thorne)

3) The Shadow of the Supermassive Black Hole (M87%)
in the center of M87 (2019, EHT collaboration)

4) The Shadow of the Supermassive Black Hole (SgrA*)
in the center of the Milky Way (2023, EHT collaboration)




Black hole with scalar hair
(Photo courtesy of Pedro V. Cunha)




Preview of no-hair theorem
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* Minimally coupled (massless complex, massive) scalar
- No-hair theorem
- GR black holes without scalar hair

* Conformally coupled scalar: jd“x@ [R—a(6(a¢)2+¢2R)]

- Evasion of no-hair theorem
- Analytic extremal BBMB black hole with scalar hair
(but scalar hair is secondary and diverges at r=m)

2 2
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- Its series (numerical) solution was also found in eprint:1907.09676.
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Three important works for Spontaneous Scalarization: GB+[1,2] and M+[3]

1. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended
Scalar-Tensor Theories

Daniela D. Doneva and Stoytcho S. Yazadjiev
PRL120 (2018) 131103-Published 30 March 2018

2. Spontaneous Scalarization of Black Holes and Compact Stars from
a Gauss-Bonnet Coupling

Hector O. Silva, Jeremy Sakstein, Leonardo Gualtieri, Thomas P. Sotiriou, and Emanuele Berti
PRL120 (2018) 131104-Published 30 March 2018

3. Spontaneous Scalarization of Charged Black Holes

C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual and J. A. Font,
PRL121 (2018) 101102 -Published 5 September 2018
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GB, spontaneous scalarization for SBH=0S-BH

1 14 Voo
Stams =7 [ d'x\=g[ R=209)" + 2 [ (P)Rey |, Rop = R =4R, R" + R, R""
T 2 B 2
Coupling function — f(¢) = ! fz , ¢2 , | R = 48—]‘64 > 0| for SBH
r
O Onset scalarization based on the linearized scalar theory
2p2

® Linearized scalar eq: [El—mfff (r)] Sp =0 with m’ () = —% < 0 (tachyon-like mass)

e Tachyonic instability (% < % =1.174r,) for SBH (destabilization of SBH)

th

¢ Infinite scalar clouds predict infinite branches of #n=0 (l < L), 1 (% <0.453r,), 2 (% <0.2807r,), -

th
O Solving full eqs with their backreation — scalarized SBHs and performing their stability analysis

— n=0:stable, others of n=1, 2, 3,---: unstable

o Seeds to generate four (7=0,1,2,3) branches

- Y — Zali
] \ = 1453
ok - <0280 Four scalar clouds>




Comment #1: Tachyonic Instability for scalar field>
- Gregory-Laflamme instability for Ricci tensor
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Y. S. Myung and D. C. Zou, arXiv:1805.05023




Einstein-Weyl gravity: §

=y[d'x-¢ [

2
HVPOo 2

* Linerarized massive tensor eq around SBH Wlth R, =0:

(A, +m2)SR,, =

with Licherowicz operator of A OR,,

=—0O0R, —2R_ _OR"™.

Hpvo

« Zerilli-potential for / = 0-mode of linearized Ricci tensor

—>—> Vz(r):(l——+
r

« GL nstability bound on m,: 0<m, <m, =

9

r

3
r

2
2

3r°(r, —0.57) +3r,(r—0.5r.) / m;,

n;z(r3+r+/m22)2

th
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v,

« Non-Schwazschild black hole with Ricci tensor hair (R, # 0)
— Lu-Perkins-Pope-Stelle solution, PRL114 (2015), 171601




Comment #2: What is spontaneous scalarization?

Curvature-induced (GB+) spontaneous scalarization (SS) in EGBS theory

- Scalar coupling f(¢) to GB term develops tachyonic (GL) instability

- Infinite scalar clouds (static scalar perturbations) are seeds to
generate infinite branches of scalarized SBHs.
(SS: onset scalarization 2 determines whole scheme for scalarization)

- Their backreation originates scalarized SBHs when solving full eqs.

(Infinite branches: n=0 branch is stable, but all other branches of n=1,
2, 3,"*" are unstable)




Ashitekar-Pawlowski-Singh (APS) model for the interior region

- A Dust Ball

- Loop Quantum Cosmology (LQC) goes beyond the Big-Bang singularity
- Big-Bounce from LQC can avoid Big-Bang singularity in General Relativity

B qOS model describes a collapsing Dust Ball inside a deformed SBH.

B qSC model represents a deformed SBH surrounded by APS model.

Loop Quantum Cosmology, I. Agullo and P. Singh, eprint:1612.01236
Jerzy Lewandowski, Yongge Ma, Jinsong Yang, and Cong Zhang,PRL130 (2023)101501



Oppenheimer-Snyder model - = OS-BH=SBH

Singularity

Some facts:
Event Horizon « The dust ball takes the metric ds* = — dr° + a( r):dsf :
,  8aG
. a(r)is governed by: H- = -T'p and d,(pa’) = 0;

* The Schwarzschild outside is the unique spherically
symmetric and stationary metric that can be glued to the
dust ball metric by the junction condition. This is the result
without necessary to consider the EOM.

. GEED

Initial hypersurface

Quantum Oppenheimer-Snyder model_

ds® = —dr’ + a(t)zds,z:

» :
’ 882G P j
H = - p(l ——)andd(pa’) =0

/ )

by not EOM but Junction Condition

A ds® = —f(ndf? + g(r)"'dr* + r’dQ?

2GM  aGM
— +

f(rn=gr)=1-
r r
! L 3 02
t @ a=16y3sre,

Cong Zhang : Quantum Oppenheimer-Snyder & Swiss Cheese Model - Loops'24




APS model for the interior spacetime

e Semicalssical solution of APS metric: ds2, =—dz* +a(z) [dfz + 7 (d6?2 +sin’ Od g’ )]

%

e deformed Friedmann equation by

H’ =(f
a

7

831G
=—pP

3

/[1+

o,

Px

|

defomation parameter:

e Conservation-law

v 4 1 d Cl
VﬂTAPS# :0_>TﬂAPS’ :dlag[p,0,0,0]—> '0+3;,0=O—>,0(T):

/Braneworld Scenario (+)

— classical regime: p < p, &

M
dra’ ()i 13

dr

M — total mass of Dust Ball with radius a(7)7,

e Dust Ball describes geodesics with 7,0, ¢ = constant, but it is confined to 0 <7 <7




Two (GR/LQC) different cosmological solutions

H = H(p)
with
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Non-singular cosmologies matching regular black holes, Shulan Li, Jian-Pin Wu, Xian-Hui Ge, e-Print: 2512.00926
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Exterior Spacetime-> qOS-BH spacetime

e gOS-BH solution for exterior spacetime by imposing | junction conditions

2
dsios =g, dx"dx" = —g(r)dt® + gdg’) +r (d02 +sin’ ngf)z)
2 2 2
with g(r)=1- 2GM + oG f\/[ =1- 05 (7) (mqos () : mass function)
r r r

— A defomed SBH, but its Penrose diagram is similar to RNBH
¢ (0,p) — joint region for Dust Ball and qOS-BH

e M — ADM mass of qOS-BH and o = 16\/5727/3 fé — quantum parameter
with y (Barbero-Immirzi parameter) and /| =+/G% =1(Planck length)

Jerzy Lewandowski, Yongge Ma, Jinsong Yang, and Cong Zhang, PRL130 (2023)101501




: . os  Los
— a BH mass gap < anisotropic EM tensor | 7, = e
gluv

where | L s | — anisotropic fluid model

2
because of T = 30;@4 diag[—1,—-1,2,2] = diag[~p,os, Pyos> Po» P, ]

2
e Comparing it with RN-EM tensor 7, = 20 diag[—1,-1,1,1]

4
r
e An exterior observer in past A-region may not see any quantum effects.

3aM?

6
r

e But, a Killing observer perceives |p g = due to collapsing of Dust Ball.

e If the quantum deformation of the APS vanishes, one finds T jvo *=0 (SBH=0S-BH).




Mass function - bouncing point
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bouncing point from junction condition:
1

Mos(r)=0—>n(M,a)= (%)g

_______________ — 1nner horizon

e NEC/WEC/SEC are satisfied, but DEC is not satisfied.




— r,(M,a=1)

— r.(M,a=1)

— ro(M)=3M/2

b
—_
o
(&)
S
i
(]
S
<

10L — rl@)=(@2)”




Quantum Oppenheimer-Snyder model ‘Wwith & # 0

i / N
NS PL
/ 7 *
No BH d BHs exist
‘ .
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Cong Zhang : Quantum Oppenheimer-Snyder & Swiss Cheese Model - Loops'24




A:r>r,
Three regions > B: r<r <r,

C0<r <r

7 —> (bouncing point)
r=0: -een (singularity)

| Timelike geodesics of Dust Ball:
i (A)—>r.>r(B)y->n(C)>r(B)—>r —>i (A




= 7(M,«)=0— Extremal Point
nc(M,a) = 0 — Extremal Point
= 3dc(M,a) =0 — Davies Point
(double horizon)
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3. GB-onset scalarization of qOS-BHs

1
£EGBSq 6

¢ Einstein eq:
2 OS
G, =20,40,¢-(04)g, +1,,+1,
: _ a a af ) a
with " =2RV Y A +4V"Y G, -8R V"V +4R"V Y, ¢  —4R) V'YV,

30:M2

[R 2(89) + gf(¢)R2B +qus} with coupling function f(¢) = 2[ ? —%’54}

¥, =11'(¢)0,¢ and T;‘OS’V =

diag[—1,-1,2,2].

e Scalar eq: O¢ +% (PR, =0

— qOS-BH solution with ¢=0 for the background spacetime
2 2

dr +r2dQ with g(r) =1- 2M Od\:[

g(r) r r

dsjos =—g(r)dt’ +

Spontaneous scalarization of charged black holes at the approach to extremality,Y.
Brihaye and Betti Hartmann, Phys.Lett.B792 (2019) 244

Aspects of Gauss-Bonnet scalarization of charged black holes, Carlos A. R. Herdeiro, Alexandre M. Pombo, Eugen Radu,

Universe 7(2021), 483
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GB- onset scalarization> Thermodynamics of qOS-BH

e Linearized scalar eq > (E—ﬁfszf ) 5¢ =0 with 7', =—AR’,

ool .

i t,r. 0’ t,r.) 0 t, 7
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—: A< 07 =—AR’, <0 (tachyonic term)
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e Sufficient condition of instability — ro v(r) dr =1, <0 with reduced potential v(r) = Vio()

i g(r)
[, =0——> M (a=1,1): Numerical data

2 2 2 3 6
eFor —A>a,M — naffdeEI(M,a)<O—>[(M,a):6M [120M"a” —275M ar; +88r7] _

(M ) 557

0

—— M oM =0.7854

e M.,(a=11) €[M_.,M_] could be obtained by computing time-domain profile y (¢, ) and

min

. . — p— C 2 . . .
taking Gaussian wave packet w,,(0,%)=e ""*’'* as an initial wave.
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Voqos(r,1,1.2835)

paos(r.1,1.2835)
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In this case, we directly construct scalarized qOS-BHs
by solving full EOMs.

However, we could not obtain scalarized qOS-BHs
because | =?|is still unknown.

- Comment #4: A handicap of qOS-BHs obtained by junction condition.



4. GBe onset scalarization of e(extremal) qOS-BHs

eqOS-BHs >degenerate state
—>zero temperature/zero heat capacity but non-vanishing entropy

r 2r r 4r

dc(Mp,ap)=0
re(M;.a.)=0

OM  aM? (3MY( M 3
.g(l"):l— . + n a—)ae=27M2/16 ? 1— 1+_+ > r

s 1.0

e ¢qOS- BH spacetime 0t

0ok

dr?

g.(r)
e 5(/ = 0)-mode scalar potential

M OM* .
3r3 — 92r - +m§ff}wnh e, =—AeRg, =—

e Sufficient condition for instability

30\ e e e a1
dsios =—g.(r)dt’ + j :

+rdQ g (r)= (1——
2r

27AM? {ISMZ 24 M }
- +8

6
2r r? v

V,(r)= ge(r){

» V,(r T0M* + 641
L—3M/2{ge§r§} dr=1,(M,1)= 315M° <O0=>0<M <M, os(A), M o5(A)=0.968-4




Whole negative of eGB-term in the near-horizon of eqOS-BH:
Tachyonic instability is available for any ;| <

eRZ (re[r..5],M,a=1)
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Contrastively, tachyonic instability is allowed for1 >0

GB, scalarization for SBH with A> 0
2M 2M 48AM*
Vs(r) = gs(’”)li +mSBHi|> gs(r')=1—7, Mgpy = —ARGy = — 6
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> V.. (r,1) 1s not properly defined for » > 2.11
| = Unabling to obtain scalar clouds for scalarized eqOS-BH




Comparison between GB-/GBe /GB+ onset scalarizations
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- Single branch of scalarized qOS-BHs

1 Allowed region for GB-scalarization with |

= positive heat capacity (single branch)
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GB+scalarization with|4 >0

=>Infinite branches of scalarized SBHs



Comment #5: No scalar clouds are found for eqOS-BHs.
—>This requires our investigation to confine to the near-extremal limit
or the near-horizon approximation.

Penrose Diagram for
eRNBH

inN(V)E(l_GTMj

Large D extremal RN AdS,

TThe strip enclosed by dashed purple curves represents
its near-horizon region, | 4dS, xS*
(eprint: 2505.08012)




5. GBer onset scalarization of eqOS-BHs

e Near-horizon geometry of Bertotti-Robinson (BR) spacetime (4dS, x S*)

2 o) 2
ds2, = (%”j (=prar> +94£2°) (3TM) (d6” +sin’ do®) with M=§

2

e GB term: — AR, =81 — u’(mass term)

e s-mode (/ =0) linearized equation

| T 0°0d(r, p.) 0°0d(t, p.
_7535¢+5P(p25p5¢)—ﬂ25¢=0 pp | THCL) GHCL) _y (o, 2)oh(c. p.)

h- 2 2
Sch-eq 82_ ap*

2

with GB-potential V,(p., A1) = £ — >V (p,A) =’ p’°

*

e Breitenlohner-Freedman (BF) bound around AdS,

1 : :
W= = = to have a regular (massive) scalar & 1 < u;, —> a tachyonic scalar



o Sh(z,p.) = e () — e\ TONP) (Fop_y (5 )] 6(p) =0

Sch-eq ap*Z
L (gj L _N322+1

Normalizable solution — o¢(p.) = \/Z J (wp.) = 5P(p) = —= :

N

T ime-indepedent 625 .
i 5¢(Ta ,0*) = eQ 5¢(,0*) - Scl?—elzl : 4 aigp ) B

[ Vo (P, 4) | 58(p) =0
Tachyonic solution — 5¢(p.) =/p.Y, (iQp.) = 54(p) = = 4 (@j
Jp "Lp

Normalizable solution Tachvonic solution

! 1000 -
' ]
— 5!@[9,)‘.:1,”:1] l' o [\ /\
i
 een ViglpA=) : ] 0 1. VA\_.-—
1 =500 \}1/
, -1000 [ \
: — Re[6¢(p.A=—-1,0=1)] '
J - -1500 - \
JJ """ VGE[F!"":_”
B/~ =
[AY, ; :
104 001 | 1 | 100 | °



Regular and tachyonic solutions with BF bound

1P =—0.1> 12, =025 : W ==0.5< i,

— 6¢(e,A=-1/80,w=1) | 0.0}
| -02}

| -04f

: _{}_ﬁf_ — Re[6¢(p.A=-1/16,0=1)]

' | === Vgg(p.A=-1/16
| -08] celp )

: -1.115

{-12L

10~ 0.01 1 100




e Scalar clouds from static (linearized) equation with =0 and v=

0" 5¢(p.)
op:

Vg (P, SP(p.) = 0

V324 +1
2

1 1

1
3P ) =c(p) Fe(p) 8P ) =c(p) te(p) 2
e Tachyonic cloud with ¢,=c,=0.5 and its negative potential

Analytic sol —

op(p,A=~1)=

1

—=COS

7

s VGB(,O,/fL :_1) :_8102

( V31 ln[p]j
2

e Scalar cloud with ¢,=1, ¢,=0 and its positive potential

Analytic sol —»

5¢inf (,O,Z — 1) — (_j
o

1

\/§+1

2

, Vep(p,A=1)=8p’



Comment #6: Two branches (analytic scalar clouds with negative/positive/ )

and comparing them with GB+ scalarization

— O0¢le.A=-1)

s0- {  =eee- Vee(p.A=-1)

Scalar cloud with positive potential

IR WANP N
\V4

3.0x10" F
2.5x1083 |

2.0x101 [

— 6¢inr(0.A=1]]

1.5x10" [
g - ==== Vgg(p.A=1)

1.0x1013 |

5.0x1012 |

0f--->

104 0.001

0010 0400 1
o

104 0.001

10

- Scalar cloud with many nodes for GB+

but it is large atp=0

10

- n=0 scalar cloud for GB+
but it blows up at p=0
- Aretakis Instability of eqOS-BH

Four scalar clouds
in GB+ scalarization

for SBH=0S-BH




6. Entropy function approach to GBer scalarization

We found two branches of analytic scalar clouds with negative/positive /]

El
1. Lyg =?—> Lgp = —2E(F)?  with F=F, F* — " and £ =—~—

<—|charged qOS model, EPJC85(2025), 667

3aP?

Its anisotropic EM tensor — |7, = i diag[-1,-1,2,2]———>qOS-BH

3IM

3. Itsext IBH —>r, =+ PJ3 >7, =
s extrema v V3a PR ==

. 3M Y
— the same as eqOS-BH with g (r)=| 1 - PN
r

4. A quartic coupling function for GB, scalarization — f(¢) =2 (gﬁz — % ¢4j

5. Sen’s entropy function approach based on the attractor formalism
may be used to obtain
scalarized eqOS-BHs with scalar hair.



2
* BR spacetime: |ds’ = . =V, (—p d'02 j-l-v2 (d¢92 +sin’ 90[(02) with ¢ =u

e GB term with scalar hair: A1 (¢) R; — _164 (u —gu“j

e Ricci scalar: R = 2 o+ ]

i W

(98]

3a | 22p° | 6ap’

\/EP V23 - Vg

e Entropy function for a magentically charged NED:

e NED term : Ly, =—2&(F )2 —>—

Ent(v,,v,, p,u) =7 vz_v1+3vap +82(u —%u“ﬂ

Vz



o MWLV D) g ol 1 30 o,y — Bap=r
dv, V2
s 2 N
v, V) 2 :

e Reduced entropy function by eliminating v, :

a

— REnt(v,,u) = 7{\/2 + 84 (uz —Zu‘lﬂ

—

dEnt(vl,vz,p,u):O —2u—au’ =0 U= z

scalar hair solution
du a

¢ Final Entropy function:

— |[{Ent(a, p,a, A) = 72'(\/2 +%j —> 72'(\/30([?4-%)
a

a




Final Entropv function

. — fEnt(a=1,pa=2,A=1)
- —— fEnt(a=1,p,a=2,A=0)
—— fEnt(a=1,p.a=2,A=-1

\

X

0.005 0.010 0.050 0.100 0.500 1
p




/. Discussions

* GB+ spontaneous scalarization on SBH=0S-BH

1. Tachyonic instability triggers onset of scalarization.
2. Infinite branches of scalarized SBHs from infinite scalar clouds
(n=0 branch: stable, other branches : unstable).

- GB- onset scalarization on qOS-BH

1. Single branch of scalarized qOS-BHs.

2. Allowed region for GB- scalarization= positive heat capacity
> M, _ (=0.7698) <M, (a=1,1<0)< M (=0.8827)

3. However, one cannot obtain any scalar clouds.

4. We could not obtain scalarized qOS-BHs because of unknown

qOS




* GBe onset scalarization on eqOS-BHs

1. Single branch of scalarized eqOS-BHs.
2. GBe scalarization is allowed for negative /.
3. However, one cannot obtain any scalar clouds.

* GBer onset scalarization on eqOS-BHs-> two branches

GBsr-scalarization is allowed for any negative/positive 4

-> Tachyonic cloud is obtained with negative potential.
- Scalar cloud is found for positive potential.




* Entropy function approach to GBer scalarization

Entropy with positive 4 (>Entropy with negative 1)
—>Stable scalarized eqOS-BH with primary scalar hair «=+v2/a




Appendix: Aretakis instability for eqOS-BHs
—> Classical instability of eBHs due to degeneracy of the redshift

: : : : : : 1
¢ Ingoing Eddington-Finkelstein coordinates with V' =7 ——

P
ds.. =—p°dV’> +2dVd p +(d6’ +sin’ Od p*)
e Linearized scalar equation around A5,
[2@Vap5¢ +0,(p%0,00) - 1’59 =0 ] 1> =81
e Acting 9 (transverse derivative) on [---]
—520,0"15p =[84— N(N +1)]0" 56 — 0
iff 8A=N(N +1) —>N:v—%

Stability and Instability of Extreme Reissner-Nordstrom Black Hole Spacetimes for Linear Scalar Perturbations I,
Stefanos Aretakis, Comm. Math. Phys. 307 (2011), 17-63

Gravitational instability of an extreme Kerr black hole, James Luciettia and Harvey S. Reall, PRD 86 (2012), 104030


https://arxiv.org/search/gr-qc?searchtype=author&query=Aretakis,+S




e Furthermore, we have transverse derivatives

—> 8’;5¢N, N4l |ps0® V*=""'(on the horizon)

e For A=1/4(N =1, 1" =2) with standard mass,

— 0,00, 0,0,

,0—)0 2 p—>0 2

one finds

0,68, |

p—)O

o 7
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Tachyonic cloud with negative potential
—>has nothing to do with Aretakis instability

Scalar cloud with positive potential (standard mass)
- is related to Aretakis instability
- Degeneracy of the redshift around 45,






