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No-hair (Kerr) hypothesis  implies that the astrophysical black holes are 
described by the Kerr family with mass(M ) and angular momentum (J ).

→ So far, all observations are in agreement with the Kerr hypothesis. 

1) Motion of stars around the supermassive black hole in the center 
of  our galaxy (2020 Nobel Prize: Penrose-Genzel-Ghez)

2) Observation of GWs from black hole mergers 
(2017 Nobel Prize: Weiss-Barish-Thorne)

3) The Shadow of the Supermassive Black Hole (M87*)

in the center of M87 (2019, EHT collaboration)

4) The Shadow of the Supermassive Black Hole (SgrA*)

in the center of the Milky Way (2023, EHT collaboration)

1. Introduction



Black hole with scalar hair
(Photo courtesy of Pedro V. Cunha)



Preview of no-hair theorem 

Scalar-tensor theory No-hair theorem by Scalar hairy BHs

Scalar-vacuum→ Chase
Commun. Math. Phys. 19 (1970) 276

No

Massive scalar-vacuum→ Bekenstein
Phys. Rev. Lett. 28 (1972) 452

No

Massive complex scalar-vacuum→ Pena-Sudarsky
Class. Quant. Grav. 14 (1997) 3131

Yes, primary & regular

(2015)

Conformal scalar-vacuum→ Xanthopoulos-Zannias
J. Math. Phys. 32 (1991) 1875

No, but a secondary

BBMB solution(1970,1974)

V-scalar-vacuum→ Heusler-Straumann, Bekenstein
Class. Quant. Grav. 9 (1992) 2177
Phys. Rev. D 51 (1995) 6608

No, but many solutions 
for negative potentials
→Evasion of

noble no-hair theorem

Brans-Dicke theory→ Hawking, Sotiriou-Faraoni
Commun. Math. Phys. 25 (1972) 167
Phys. Rev. Lett. 108 (2012) 081103

No

Horndeski/Galileon theories→
General scalar-tensor theories

Hui-Nicolis
Phys. Rev. Lett. 110 (2013) 24, 241104

Yes, secondary (2014) 

and primary (2014)
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〮 Minimally coupled (massless complex, massive) scalar 
→ No-hair theorem
→ GR black holes without scalar hair

〮 Conformally coupled scalar

→ Evasion of no-hair theorem
→ Analytic extremal BBMB black hole with scalar hair 

(but scalar hair is secondary and diverges at r=m)

→ Its series (numerical) solution was also found in eprint:1907.09676.

R. Ruffini and J.A. Wheeler, Phys. Today 24,  30 (1971).
J.D. Bekenstein, Phys. Rev. Lett., 28, 452 (1972).
N.M. Bocharova, K.A. Bronnikov and V.N. Melnikov, Vestn. Mosk. Univ. Ser. III Fiz. Astron. , 706, 6 (1970) .
J.D. Bekenstein, Phys. Rev., D51, R6608 (1995).
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1. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended 
Scalar-Tensor Theories

Daniela D. Doneva and Stoytcho S. Yazadjiev
PRL120 (2018) 131103-Published 30 March 2018 

2. Spontaneous Scalarization of Black Holes and Compact Stars from 
a Gauss-Bonnet Coupling

Hector O. Silva, Jeremy Sakstein, Leonardo Gualtieri, Thomas P. Sotiriou, and Emanuele Berti

PRL120 (2018) 131104-Published 30 March 2018 

3. Spontaneous Scalarization of Charged Black Holes

C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual and J. A. Font,
PRL121 (2018) 101102 -Published 5 September 2018

Three important works for Spontaneous Scalarization: GB+[1,2] and M+[3]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131103
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131104
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131104
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131104
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.131104
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Y. S. Myung and D. C. Zou, arXiv:1805.05023  
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Comment #1: Tachyonic Instability for scalar field→ tachyon?
→ Gregory-Laflamme instability for Ricci tensor
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Curvature-induced (GB+) spontaneous scalarization (SS) in EGBS theory

→Scalar coupling       to GB term develops  tachyonic (GL) instability

→ Infinite scalar clouds (static scalar perturbations) are  seeds to 
generate infinite branches of scalarized SBHs. 
(SS: onset scalarization → determines whole scheme for scalarization)

→Their backreation originates scalarized SBHs when solving full eqs.
(Infinite branches: n=0 branch is stable, but all other branches of n=1,
2, 3,〮〮〮 are unstable) .

( )f 

Comment #2:  What is spontaneous scalarization? 



Ashitekar-Pawlowski-Singh (APS) model for the interior region

→ A Dust Ball
→ Loop Quantum Cosmology (LQC) goes beyond the Big-Bang singularity 
→ Big-Bounce from LQC can avoid Big-Bang singularity in General Relativity

2. quantum Oppenheimer-Snyder (qOS) model

Loop Quantum Cosmology, I. Agullo and P. Singh, eprint:1612.01236 

■ qOS model describes a collapsing Dust Ball inside a deformed SBH.
■ qSC model represents a deformed SBH surrounded by APS model.

Jerzy Lewandowski, Yongge Ma, Jinsong Yang, and Cong Zhang,PRL130 (2023)101501



Cong Zhang : Quantum Oppenheimer-Snyder & Swiss Cheese Model - Loops'24

by not EOM but Junction Condition

→ OS-BH=SBH

→ qOS-BH
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Cong Zhang : Quantum Oppenheimer-Snyder & Swiss Cheese Model - Loops'24

with 0 
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Penrose diagram for 
qOS model → RNBH
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Thermodynamics of qOS-BH for A-region: prediction?
positive Heat capacity →Allowed region for GB- scalarization
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3. GB-onset scalarization of qOS-BHs
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GB- onset scalarization→ Thermodynamics of qOS-BH

( ) 2

eff

2 2

* * *

f

* *2 2
| | *

2
2

eff3 6 2

Sch-e

2

q

2

ef

( , ) ( , ) ( , )
( , , , ) ( , ) ( ) ( , )

2 4 (

0 with Linearized scalar e

1)
with ( ) ( ) a

 

nd

q

  

lm lm lm
lm lm

m l m

GBm

t r t r t r
t r Y V r t r

r r t

M M l l
m

m R

V r g r
r r r



  
  



  





=

•

 
= − =

 

 +
=

⎯

− 

−



=

+

→

⎯

=

→

−

⎯

+




 


2 2 2

2

eff 6 6 3

0 * *00 00

2

3

48 3 5
1

 ( ) ( , )Critical onset condition

Critical onset curve       ( , ) 3 5 1 0 with 

,

Critical onset param  

0 ( ) ( , ) 0

 

 eters

[ ]

c c

l

c

M M M
m

r r r

V r t r rc M t r

M
rc M

r





   

  

 = +

+

→−

→  − +

= − − +

• → = ⎯

→

⎯ →

= =

⎯ =

•

•







0.2324 1.2835  for 1 ( )=0.8827=  for =1c DcD c cc M M M  = → = = =

Comment #3: 
Davies curve=Critical onset curve
→Feature of qOS-BH 



Sign flip-flop  of GB-term in the near-horizon:
Tachyonic instability → 2 2
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GB- onset scalarization→ positive heat capacity
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Boundary potentials→ ill-defined (unable to find scalar clouds),
being seeds to generate finite branches for scalarized qOS-BHs
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In this case, we directly construct scalarized qOS-BHs 
by solving full EOMs.
However, we could not obtain scalarized qOS-BHs
because          is still unknown.

→ Comment #4: A handicap of qOS-BHs obtained by junction condition. 
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4. GBe onset scalarization of e(extremal) qOS-BHs
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Whole negative of eGB-term in the near-horizon of eqOS-BH:
Tachyonic instability is available for any  0 
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Whole positive of GB-term in the near-horizon of SBH=QS-BH:
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Boundary Potentials→ handicap (unable to find scalar clouds),
being seeds to generate infinite branches for scalarized eqOS-BHs
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GBe scalarization with 
→ Single branch of scalarized qOS-BHs 

GB+scalarization with      
→Infinite branches of scalarized SBHs
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Comment #5: No scalar clouds are found for eqOS-BHs.
→This requires our  investigation to confine  to  the near-extremal limit 

or the near-horizon approximation.  

Penrose Diagram for
eRNBH

↑The strip enclosed by dashed purple curves represents 
its near-horizon region, 
(eprint: 2505.08012)
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5. GBBR onset scalarization of eqOS-BHs
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Four scalar clouds 
in GB+ scalarization 
for SBH=OS-BH

→ Scalar cloud with many nodes for GB+
but it is large  at  

→ n=0 scalar cloud for  GB+ 
but it blows up at 

→ Aretakis Instability of eqOS-BH

Tachyonic cloud with negative potential

Comment #6: Two branches (analytic scalar clouds with negative/positive   )
and comparing them  with GB+ scalarization
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6. Entropy function approach to GBBR scalarization  
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may be used to obtain 
scalarized eqOS-BHs with scalar hair.

We found two branches of analytic scalar clouds with negative/positive  
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Comment #7: Entropy with        (>Entropy with         )
→ Stable scalarized eqOS-BH
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7. Discussions

〮 GB+ spontaneous scalarization on SBH=OS-BH

1. Tachyonic instability triggers onset of scalarization.

2.  Infinite branches of scalarized SBHs from infinite scalar clouds

(n=0 branch: stable, other branches : unstable).

〮 GB- onset scalarization on qOS-BH
   1. Single branch of scalarized qOS-BHs.

2. Allowed region for GB- scalarization= positive heat capacity

→

3. However, one cannot obtain any scalar clouds.

4. We could not obtain scalarized qOS-BHs because of unknown 

min th( 0.7698) ( 1, 0)  ( 0.8827)cM M M =  =   =

qOSL



〮 GBe onset scalarization on eqOS-BHs

   1. Single branch of scalarized eqOS-BHs.
2. GBe scalarization  is allowed for  negative   .
3. However, one cannot obtain any scalar clouds.

〮 GBBR onset scalarization on eqOS-BHs→ two branches

GBBR-scalarization  is allowed for any negative/positive 

→ Tachyonic  cloud is obtained with negative potential.  

→ Scalar cloud is found for  positive potential.







〮 Entropy function approach to GBBR scalarization

Entropy with positive   (>Entropy with negative   )
→Stable scalarized eqOS-BH with primary scalar hair 



2 /u a=

■ Thank you for attending



Appendix: Aretakis instability for eqOS-BHs
→Classical instability of eBHs due to degeneracy of the redshift
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Gravitational instability of an extreme Kerr black hole, James Luciettia and Harvey S. Reall, PRD 86 (2012), 104030
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 Furthermore, we have transverse derivatives 
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Tachyonic cloud with negative potential 
→has nothing to do with Aretakis instability

Scalar cloud with positive  potential (standard mass)
→ is related to Aretakis instability
→ Degeneracy of the redshift around 2AdS




