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The talk is mainly a review, but here are some of my contributions

Holographic CMT, QCD

arXiv:2401.00939 [pdf, other] cond-mat.dis-nn gr-qc hep-ph m 10.1007/JHEP03(2024)141
(Deep Iearnin@aulk spacetime from boundary optical conductivity

Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun

arXiv:2502.10245 [pdf, other] cond-mat.dis-nn cond-mat.str-el gr-qc (BRI 10.1103/nh4nyinz (PRD)

( Deep Iearnina)ased holography for T-linear resistivity
Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Chang-Woo Ji, Keun-Young Kim, Kwan Yun

arXiv:2511.22522 [pdf, ps, other] cs.LG

AdS Deep-Learning}nade easy ll: neural network-based approaches to holography and inverse
problems
Authors: Hyun-Sik Jeong, Hanse Kim, Keun-Young Kim, Gaya Yun, Hyeonwoo Yu, Kwan Yun /

Holographic Ql

arXiv:2406.07395 [pdf, other] cond-mat.dis-nn  gr-qc ([ 10.1007/JHEP01(2025)025
Holographic reconstruction of black hole spacetime(machine Iearning)and entanglement entropy

Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun
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Today’s Talk

(Inverse Problems in Holography)



Holography



Strongly
Coupled

Perturbation
Theory (X)

Holographic Duality

Ex: AdS/CFT Correspondence

e 1997 — Juan Maldacena proposed the AdS/CFT correspondence
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Top Cited Articles of All Time

Juan Maldacena

As of 2025

The Large NN limit of superconformal field theories and supergravity

AdS/CFT
Juan Martin Maldacena (Harvard U.) (Nov, 1997)

Published in: Int.J.Theor.Phys. 38 (1999) 1113-1133 (reprint), Adv.Theor.Math.Phys. 2 (1998) 231-252 - e-Print: hep-
th/9711200 [hep-th]

pdf %) 20,774 citations

> DOI [4 cite 2 reference search

A Model of Leptons ‘
Steven Weinberg (MIT, LNS) (Nov, 1967)
Published in: Phys.Rev.Lett. 19 (1967) 1264-1266

& links ¢ DOI [4 cite [d reference search =) 14,900 citations

AdS/CFT

Anti de Sitter space and holography
Edward Witten (Princeton, Inst. Advanced Study) (Feb, 1998)
Published in: Adv.Theor.Math.Phys. 2 (1998) 253-291 - e-Print: hep-th/9802150 [hep-th]

pdf @ links & DOI [4 cite Fa reference search =) 13,246 citations

Gauge theory correlators from noncritical string theory

S.S. Gubser (Princeton U.), Igor R. Klebanov (Princeton U.), Alexander M. Polyakov (Princeton U.) (Feb, 1998)
Published in: Phys.Lett.B 428 (1998) 105-114 - e-Print: hep-th/2802109 [hep-th]

pdf (& DOI %) 10,909 citations

[4 cite [ reference search

CP Conservation in the Presence of Instantons

R.D. Peccei (Stanford U., ITP), Helen R. Quinn (Stanford U., ITP) (Mar, 1977)
Published in: Phys.Rev.Lett. 38 (1977) 1440-1443

 links ¢ DOI [4 cite [a reference search %) 8,540 citations
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No Proof Yet  Evidence of AdS/CFT

String Theory, SUSY

« SYM theory in (3+1) dimensions ~<—»  IIB supergravity on AdSs x S°
« ABJM theory in (2+1) dimensions <+—» 11d supergravity on AdS, X S7 n

« SCFT theory in (1+1) dimensions <  IIB supergravity on AdSs x S® x M?*

Entanglement Entropy

 Explicit example of AdS/CFT Quantum Entanglement

 Measure of entanglement M

* Quantum nature of gravity Groundbreaking experiments




.
Ryu-Takayanagi Formula ..o

Holographic Derivation of Entanglement Entropy from the anti—-de
Sitter Space/Conformal Field Theory Correspondence

Shinsei Ryu and Tadashi Takayanagi : Reflected emtro
Phys. Rev. Lett. 96, 181602 — Published 9 May 2006 Physical Review Letters Py
Krylov complexity

K Minimal Surface

/

e

Renyi entropy

/ AdS 4+ Shinsei Ryu Tadashi Takayanagi
> 7
Bou%ry
A (Quantum) entanglement entropy
_ rea(VA) = Area of extremal surface

A AG N

Quantum  Gravity

“New perspective of the nature of gravity”



Applied Holography

Gravity Theory — | Quantum Physics

Describing gravitational systems Describing strongly interacting
(e.g., Black Holes) quantum systems

Perturbation Theory (X)

- Study quantum gravity in AdS (fundamental physics)

- Study strongly interacting physics (practical physics)




Holographic Methods for Many-Body Physics

Advancing

Physics

Strongly Interacting
Quark-Gluon Plasma

AdS/CMT

o 2l

April 14,2020 « Physics 13,57 APS/Carin Cain

Holographists use a string theory correspondence that relates black holes and condensed-matter
- ]

systems, such as metals and superconductors. High-Tc Superconductors

- Holography has generated a new insights and perspective on many-body physics problem

- Holography has prompted efforts from field theory, hydrodynamics and even experiments

e.g, anomalous transport phenomena



T-linear Resistivity pocTasT - oo

Holography

Science

REVIEW PHYSICS

Stranger than metals

PHILIP W. PHILLIPS ,NIGEL E. HUSSEY , AND PETER ABBAMONTE Authors Info & Affiliations
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SCIENCE - 8 Jul 2022 - Vol 377,Issue 6602 + DOI:10.1126/science.abh4273

Table 2. Snapshot of current theoretical modeling of the strange metal
regime. Indicated are consistency with T-linear resistivity, o 2’2 scaling of
the mid-IR optical conductivity, quadrature-scaling magnetoresistance,
extended quantum criticality, and what predictions are made in terms of
experimental observables. Scenarios: MFL, marginal Fermi liquid; EFL, ersatz
Fermi liquid; SYK, Sachdev-Ye-Kitaev; AdS/CFT, anti-de Sitter space/
conformal field theory conjecture; AD/EMD, anomalous dimensions/
Einstein-Maxwell-dilaton; HM, Hubbard model; QMC, quantum Monte Carlo;
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ED, exact diagonalization; CA, cold atoms; DMFT/EDMFT, dynamical mean-
field theory/embedded dynamical mean-field theory; A-B, Aharonov-Bohm
effect; ECFL, extremely correlated Fermi liquid; QCP, quantum critical point.
*T-linear resistivity is an input. **A slope change occurs through the MIR.
***Quadrature scaling obtained only for a bivalued random resistor model
(121) with equal weights (27). ****Although this scaling was thought to arise
in pure AdS with an inhomogeneous charge density (123), later studies
(124, 125) found otherwise.

o < ®?® Quadrature MR  Extended criticality = Experimental prediction
Phenomenological
MEL e VO e 8O S RO S SR Loop currents (107)
S S S N T X e 2OOP CUITENES (108)
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HM (QMC/ED/CA) | = (10)  VOZLH) | X e e
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AdS/QCD

EX1: Quark-Gluon Plasma

PHYSICAL REVIEW LETTERS

Highlights Recent  Accepted Collections Authors Referees Search Press About Editorial Team

Viscosity in Strongly Interacting Quantum Field
Theories from Black Hole Physics

P. K. Kovtun, D. T. Son, and A. O. Starinets
Phys. Rev. Lett. 94, 111601 — Published 22 March 2005

it

- Viscosity of Quark-Gluon Plasma (Insights into the early universe / heavy-ion collisions)

A
Perturbative Theory: 77/3 = 2 ogB/V0) > 1 (small t Hooft coupling ) )
AdS/QCD Theory: 7/s = 1/(4m) SOp .
77/3 20l \.\\... @\.,",u.)ater clivm oo
Experiment: 7/s =~ 0.19 ks o
0.5F e ¢ @ ultracold Fermi gas
[ @ T -— i
Fluctuation ¢ ¥ N
0.2r S o d_ & --
f quark gluon plasma ~. lL,,/*
0.1f
O—(BH © )® hzhbd% )

& -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6



AdS/CMT

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team

Building a Holographic Superconductor

Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz
Phys. Rev. Lett. 101, 031601 — Published 14 July 2008

- New perspective of high-Tc superconductivity 6 o
V<> 1 o
R e
- Spontaneous condensation, infinite conductivities, --- 2 o1 ~1-T/L,
’ Ps Oc;:o 02 04 06 08 1.6
o(w) = oo + w + 6(w) E TIT,
- Energy gap : |

BCS Theory: wy/Te = 3.5 (Weakly-coupled BCS Theory)  imo

AdS/CMT Theory: wy/T. =~ 8 (Holographic Superconductors)

Experiment: w./1. ~ 7.9 & 0.5 (High-Tc Cuprate Superconductors)
Nature 447, 569-572 (2007)




AdS/Deep Learning



Forward Holography

(Standard Method)

Forward Problem

GRAVITY Hmmmma QUANTUM

System /Model To model realistic systems Observables

(Unknown) (Exp. accessible)

Model Space Data Space

Local minima

Data (fitted by some model)

/Y &




Inverse Holography

Forward Problem

GRAVITY eswsma QUANTUM

New Predictions

System /Model To model realistic systems Observables

(Uﬂk“OW“) Data-driven methods (EXp. aCCESSibIE>

Model Space t— Data Space

Inverse Problem

Data (fitted by some model)
Models (constrained by data)

/f/

//
/ / %////14// /%




Scientific Machine Learning (SciML)

Machine Learning Scientific Knowledge

Scientific Machine Learning

Data-driven methods

More powerful, robust, interpretable ML modeling



Terminology

Scientific Machine Learning

Sub-field l vs. purely data-driven approach

Physics-Informed Machine Learning

(+ Physics laws & equations into the learning process)

O\

Physics-Informed Neural Ordinary

PDE / ODE ODE

Neural Networks Differential Equations

PINNs Neural ODEs



Useful References
Broad Applicability

of SciML

nature reviews physics

Review Article Published: 24 May 2021

Physics-informed machine learning

George Em Karniadakis &4, loannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang & Liu Yang

Particle physics
Nature Reviews Physics 3, 422-440 (2021) | Cite this article PI M L

Many-body physics
REVIEWS OF MODERN PHYSICS
Machine learning and the physical sciences’

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt- .
Maranto, and Lenka Zdeborova Quantum computlng

Cosmology

Rev. Mod. Phys. 91, 045002 — Published 6 December 2019 Physics

S . String theory
CICNCE

Solving the quantum many-body problem with artificial coe

neural networks

GIUSEPPE CARLEOQ AND MATTHIAS TROYER Authors Info & Affiliations Many-BOdy PhySics

TOPICAL REVIEW
Machine learning for condensed matter physics
Edwin Bedolla' {2, Luis Carlos Padierna?' () and Ramén Castafieda-Priego’ Data science applications fo Stl‘ing theory

Published 5 November 2020 - © 2020 IOP Publishing Ltd

Journal of Physics: Condensed Matter, Volume 33, Number 5

Physics Reports

Fabian Ruehle & & Volume 839, 21 January 2020 String Theory




My Interests..

New Prediction

GRAVITY

QUANTUM

Observables

trongl led Physi
System/Model Strongly Coupled Physics

(Unknown) Quantum Gravity (Exp, accessible)

Model Space \/ Data Space

Modeling Realistic Systems PINNSs

Bulk Reconstruction Neural ODEs




AdS/DL Correspondence

OPEN ACCESS GO MOBILE » ACCESS BY POSTECH

Deep learning and the AdS /CFT correspondence

Koji Hashimoto, Sotaro Sugishita’, Akinori Tanaka®3#, and Akio Tomiya>

Phys. Rev. D 98, 046019 - Published 27 August, 2018

DOI: https://doi.org/10.1103/PhysRevD.98.046019

Abstract

We present a deep neural network representation of the AdS/ CFT correspondence, and demonstrate the
emergence of the bulk metric function via the learning process for given data sets of response in boundary
quantum field theories. The emergent radial direction of the bulk is identified with the depth of the layers, and
the network itself is interpreted as a bulk geometry. Our network provides a data-driven holographic modeling
of strongly coupled systems. With a scalar ¢* theory with unknown mass and coupling, in unknown curved
spacetime with a black hole horizon, we demonstrate that our deep learning (DL) framework can determine the
systems that fit given response data. First, we show that, fromMerated by the anti-de Sitter
(AdS) Schwarzschild spacetime, our network can reproduce the metric. Second, we demonstrate that our
network with experimental data as an input can determine the bulk metric, the mass and the quadratic coupling
of the holographic model. As an example we use the experimental data of the magnetic response of the strongly
correlated material Smg¢Sro4MnQs. This AdS /DL correspondence not only enables gravitational modeling of
strongly correlated systems, but aIsWManism of the emerging space in both AdS and
DL.
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AdS/QCD

AdS/CMT

High Energy Physics - Theory

arXiv:1809.10536
[Submitted on 27 Sep 2018]
Deep Learning and Holographic QCD

Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka, Akio Tomiya
Phys. Rev. D 98, 106014 — Published 14 November 2018
Chiral condensate

arXiv:2108.08091
[Submitted on 18 Aug 2021 (v1), last revised 31 Aug 2021 (this version, v2)]

Deriving dilaton potential in improved holographic QCD
from meson spectrum

High Energy Physics - Theory

Meson spectrum

Koji Hashimoto, Keisuke Ohashi, Takayuki Sumimoto

Phys. Rev. D 105, 106008 — Published 13 May 2022

High Energy Physics - Phenomenology

arXiv:2401.06417
[Submitted on 12 Jan 2024 (v1), last revised 30 Mar 2024 (this version, v2)]
Machine learning holographic black hole from lattice
QCD equation of state .
Xun Chen, Mei Huang Lattlce QCD

Phys. Rev. D 109, LO51902 — Published 25 March 2024

High Energy Physics - Theory

arXiv:2511.22522
[Submitted on 27 Nov 2025]

AdS/Deep-Learning made easy ll: neural
network-based approaches to holography and
inverse problems

Hyun-Sik Jeong, Hanse Kim, Keun-Young Kim, Gaya Yun, Hyeonwoo Yu,

Kwan Yun QCD Equations of State

MANY MORE ---

High Energy Physics - Theory arXiv:2004.12112
[Submitted on 25 Apr 2020 (v1), last revised 3 Nov 2020 (this version, v3)]

Deep learning black hole metrics from shear viscosity

Yu-Kun Yan, Shao-Feng Wu, Xian-Hui Ge, Yu Tian

Phys. Rev. D 102, 101902(R) — Published 12 November 2020
Shear viscosity

arXiv:2410.06523
[Submitted on 9 Oct 2024]

Phase Diagram from Nonlinear Interaction between
Superconducting Order and Density: Toward Data-Based
Holographic Superconductor

High Energy Physics - Theory

Sejin Kim, Kyung Kiu Kim, Yunseok Seo supercondUCtiVity
J. High Energ. Phys. 2025, 77 (2025)
High Energy Physics - Theory arXiv:2401.00939

[Submitted on 1 fan 2024]

Deep learning bulk spacetime from boundary optical
conductivity

Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun

J. High Energ. Phys. 2024,141(2024) Qptical conductivity

High Energy Physics - Theory

arXiv:2502.10245
[Submitted on 14 Feb 2025)

Deep learning-based holography for T-linear resistivity

Byoungjoon Ahn, Hyun-Sik Jeong, Chang-Woo Ji, Keun-Young Kim, Kwan Yun
Phys. Rev. D 112, 126008 - Published 12 December, 2025
T-linear resistivity

arXiv:2411.16052
[Submitted on 25 Nov 2024]

Machine-learning emergent spacetime from linear
response in future tabletop quantum gravity
experiments

High Energy Physics - Theory

Koji Hashimoto, Koshiro Matsuo, Masaki Murata, Gakuto Ogiwara, Daichi Takeda

Machine Learning: Science and Technology, Volume 6, Number 1

AdS/Ql

High Energy Physics - Theory

arXiv:2110.01115
[Submitted on 3 Oct 2021]

Machine Learning Statistical Gravity from Multi-Region
Entanglement Entropy

Jonathan Lam, Yi-Zhuang You

Phys. Rev. Research 3, 043199 — Published 20 December 2021

High Energy Physics - Theory

arXiv:2205.04445

[Submitted on 9 May 2022 (v1), last revised 11 Sep 2022 (this version, v3)]

Dual Geometry of Entanglement Entropy via Deep
Learning

Chanyong Park, Chi-Ok Hwang, Kyungchan Cho, Se-Jin Kim
Phys. Rev. D 106, 106017 — Published 28 November 2022

High Energy Physics - Theory

arXiv:2406.07395
[Submitted on 11 Jun 2024 (v1), last revised 8 Sep 2024 (this version, v2)]

Holographic reconstruction of black hole spacetime:
machine learning and entanglement entropy

Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun

J. High Energ. Phys. 2025, 25 (2025) Entang[ement entropy

High Energy Physics - Theory

arXiv:2509.25311
[Submitted on 29 Sep 2025}

Aspects of holographic entanglement using physics-
informed-neural-networks

Anirudh Deb, Yaman Sanghavi Wedge Cross Section

High Energy Physics - Theory arXiv:2509.10866
[Submitted on 13 Sep 2025 (v1), last revised 16 Sep 2025 (this version, v2)]
Physics-informed neural network solves minimal

surfaces in curved spacetime

Koji Hashimoto, Koichi Kyo, Masaki Murata, Gakuto Ogiwara, Norihiro Tanahashi
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My Personal Goals (Almost Dream, lol)

Methodologies

Can ML be a consistent methods?
onsistency (complement with traditional methods)
\ Soluts Can it find new solutions
ew solutions not transparent in traditional methods?

Rob How to construct models
obustness that are both robust and accurate for data?
.. What new insights and predictions
Predictions J . P
could ML provide?




e OUTLINE

1 | Methodology
: Physics-Informed Neural Networks (PINNs)

2 | Handful Examples
. AdS/QCD, CMT, QI

3 | Conclusion



Methodology

: Physics-Informed Neural Networks (PINNs)



Neural Networks

“For foundational discoveries and inventions that enable

machine learning with artificial neural networks”




Neural Networks

Training

parameters

!

Neural networks are simply flexible functions fit to data

Training step 15000
® Noisy observations Given data, tune the parameter 6 SO that

o — PINN solution
0.5 A

O'O_ \/\ the network approximates the true function
—0.5 1

o NN(CEa 0 ) ~ ytrue(aj)

1.0 A

0.0 0.2 0.4 0.6 0.8 1.0



Perceptron

Training

Biological Neuron

parameters

!

T y = NN(x, 0 )

Perceptron is the fundamental unit of a neural network

3 ws; Activation function
(Threshold)



Activation Function I f J

Sigmoid tanh  ReLU
Step Function
10 -
o IF, g Wix; >0 —d y=1
061 (Threshold) (Activated!)
0.4
02 - O
IF, E Wix; <@ = Y=
0.0 1
4 2 é 2 4 ? (Deactivated!)

Activation function adds non-linearity by changing the output of a

neuron, helping the model capture more complex patterns

3 ws Activation function
(Threshold)



Deep Neural Networks
Training

Hidden Layers parameters

}
T >:)— y = NN(z, 6 )

Deep neural networks are composition functions of NN

NN(z, 6 ) ~War-f - fAW2 - fF(W1 T+ b1) +b2} -]+ by

7 /

0 = {Wi, bi} are learning parameters # of layers




Original contribution

Multilayer feedforward networks are

Universal Approximation Theorem

universal approximators

Kurt Hornik, Maxwell Stinchcombe, Halbert White 1 &

This paper rigorously establishes that standard multilayer feedforward networks with as
few as one hidden layer using arbitrary squashing functions are capable of approximating
any Borel measurable function from one finite dimensional space to another to any
desired degree of accuracy, provided sufficiently many hidden units are available. In this
sense, multilayer feedforward networks are a class of universal approximators.

DNNSs, NN(z, 6 ), can approximate

any continuous functions ()

¢

Neural Networks volume 2, Issue 5, 1989, Pages 359-366

Il\l\lll

~N\
o

o=

—

- -

Existence Theorem
Definition 2.1
Forany r € N={1,2, ...}, A 1s the set of all

affine functions from R’ to R, that is, the set of all
functions of the form A(x) = w-x + b where w and
x are vectors in R’, ““-”” denotes the usual dot product
of vectors, and b € R is a scalar. ]

For every function g in M’ there 1s a compact subset
K of R" and an f € 27("V) such that for any ¢ > 0
we have #(K) <1 — ¢ and for every x € K we have
f(x) — g(x)| < &, regardless of ¥, r, or p. )

| y(z) — NN(z, 0 )| < €

How to find such solutions? or how to train DNNs?



Loss Function

We tune the parameters minimizing some loss function L( 9 )

Example: L( 6 ) — % Z [ NN(%, 0 ) — y(xz)]Q

Mean Squared Error

(L2 Loss) ) f \

Training DNNs Data
, . . . 4
Typically, by using gradient decent, __Training step 0 (i =0)
parameters are optimized iteratively 0.5 ¢ . ., ..
0.0 B - ] 8 qu

oIt =07 — 1, L(?) | -

» Noisy observations

a O
O _ ]
T oV —— PINN solution
e
T T T T T

: : . _ 0.0 0.2 0.4 0.6 0.8 1.0
the iteration (epoch) learning rate (step size)




Loss Function

We tune the parameters minimizing some loss function L( 9 )

Example: L( 6 ) — % Z [ NN(%, 0 ) — y(xz)]Q

Mean Squared Error

(L2 Loss) v f \

Training DNNs Data
Typically, by using gradient decent, Training step 5000 (j = 5000)
. . . . 1.0 ® Noisy observations
parameters are optimized iteratively K- — PINN solution

Itl —pJ _ Ay L(Hj)

I 1

the iteration (epoch) learning rate (step size) . o2 o e . +0




P (ypyTorch | Deep Neural Networks
Automatic Difierentiation

python’

TensorFlow Adam Optimizer L-BFGS

We tune the parameters minimizing some loss function L( 9 )

Example: L( 6 ) — % Z [ NN($7;, 0 ) — y(xz)]Q

Mean Squared Error

(L2 Loss) ) f \

Training DNNs Data
Typically, by using gradient decent, o Training step 15000 (J = 15000)
.. . . ' ® Noisy observations
parameters are optimized iteratively . — PINN solution

e N AVAV

the iteration (epoch) learning rate (step size) be 0.2 0.4 0.6 0.8 =




Physics-Informed Neural Networks
(PINNSs)



JOUFﬂCIl of Computotional PhYSiCS Volume 378, 1 February 2019, Pages 686-707

Phxsics—informed neural networks: A deep
P hySic s- I nfo rm ed learning framework for solving forward and

inverse problems involving nonlinear partial
differential equations  “ 5 creosy vear

N e u ral N etwo rks M. Raissi ¢, P. Perdikaris P & &, G.E. Karniadakis © e tg‘\ 18453 2019
Omanal)

PINNs incorporate physical laws (PDE, ODEs), directly into the training process.

L( v ) — L(@ )Data, + L( 0 )Equations

Standard NN
(solely rely on data) T
Data Loss Physical Loss
To ensure the model To encode the governing
fits the available data points physical equations

preventing

1) to construct robust models (even with limited or noisy data) .
overfitting problem

2) a new (forward problem) solver to model system dynamics

3) an inverse problem solver to learn the underlying physical parameters of the system



v v Broad Applicability
of PINNSs

Home > Journal of Scientific Computing > Article

B' d. i . L] L3 Ll .
1012;&@ _ o Scientific Machine Learning Through
Heat Transfer  Jogaé  Chemical Engincering Physics—Informed Neural Networks: Where

we are and What's Next

Open access | Published: 26 July 2022

Dynamical
Systems

POWCI' SyStems Volume 92, article number 88,(2022) Cite this article

S

Computer Science > Machine Learning arXiv:2410.13228

Frorn PINNs io PIKANs: Recent Advances in
Physics-Informed Machine Learning

Juan Diego Toscano®!, Vivek Oommen®!, Alan John Varghese™!, Zongren Zou?,
Nazanin Ahmadi I)aryakgnarl Ch(,nx1 Wu", George Em harnmdakls“b 2

¢ Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA
bSchool of Engineering, Brown University, Providence, 02912, RI, USA
“Center for Biomedical Engineering, Brown University, Providence, 02912, RI, USA

Materials EAANE i Fmance Autonomous Computer Science > Machine Learning
o *’]“ Systems
- o o .
Mol ﬁewabb Physics-Informed Machine
Selences physics Energy Learning in Biomedical
S Science and Engineering

Home > Acta Mechanica Sinica > Article

Physics-informed neural networks (PINNs)

for fluid mechanics: a review

Invited Review | Published: 23 January 2022

; /. \ Journals & Magazines > IEEE Transactions on Power Sy... > Volume: 38 Issue: 1 @
|||" P ly . . . . .
8—°n4"g Applications of Physics-Informed Neural Networks in Power Systems - A Review
. L4 —
Nuclear physics Quantum Physics publisher: IEEE [ GteThis | Ge—

Bin Huang ¥ ; Jianhui Wang All Authors




Science

Hidden fluid mechanics: Learning velocity and pressure

fields from flow visualizations

MAZIAR RAISSI O ,ALIREZA YAZDANI 0 , AND GEORGE EM KARNIADAKIS O Authors Info & Affiliations

- pp. 1026-1030 - DOI:10.1126/science.aaw4741

30 Jan 2020 -« Vol 367, Issue 6481

SCIENCE -
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Example

Damped Harmonic Oscillator 1.25
&\ — |Underdamped
S [ [ p— Overdamped
0.751 | .
.~ ——= Critically Damped
1 / 2 _ |
" (t) +202'(t) +wyx(t) =0 x osof |
/ \ 0.25 - N /,\
0.00 —f= =
Damping coefficient Spring constant —0.25 . ~
—0.50
0 5 10 15 20
t

(]
(0 < wo) Data Preparation
o oo
e’ o
0.5 4
(o] e © OO o
o o ¢
0.0 i o 8
o) ®
CI) (@)
—0.5 ° ® ® Noisy observations
K & —— PINN solution
0.0 0.2 0.4 0.6 0.8 1.0

(6, wog) = (1, 20)

import torch

imporereren T as oo nn: Neural Networks

PyTorch

def __init__ (self, N_INPUT, N_OUTPUT, N_HIDDEN, N_LAYERS):
super().__init_ ()

DNN activation = nn.Tanh
5; self.fcs = nn.Sequential(x[nn.Linear(N_INPUT, N_HIDDEN),activation()])
self.fch = nn.Sequential(x[nn.Sequential(x[nn.Linear (N_HIDDEN, N_HIDDEN),activation()]) for _ in range(N_LAYERS-1)])
self.fce = nn.Linear(N_HIDDEN, N _OUTPUT)
d d = torch.nn orch.zeros(1, requires_grad=True)) Training
wg WO = torch.ny.Parameterfjtorch.empty(1).uniform_(@, 50), requires_grad=True) parameters
torch.optim List(pinn.parameters())+[d]+[w@], lr=1e-3) Optimizer
dxdt = torchfautograd.gradfx, t_physics, torch.ones_like(x), create_graph=True) [0] Auto-grad

1 N

Loss L(8,5,w0) = %

i

Physical Loss

M

y 2 A
Z [epinn (85 0) + 28 zppn (i3 0) + wi zpinn (85 6) | + Y Z (zpmnn(tj50) — Tobs(t;) s

J

Data Loss




preventing

1) to construct robust models (even with limited or noisy data)

overfitting problem

Training step 20000

Lo ~_ o e Noisy observations Standard Neural Network solution
P Exact solution /
0.5 —— NN solution A/ . .
(training only with data)
0.0 1
o “It's suffering from the overfitting problem
even in simple example”
-1.0 1 >
0.0 0.2 0.4 0.6 0.8 1.0 “It's quite poor outside the data domain”
Training step 20000 Physms-lnformed
101 Neural Network solution
0.5 1
oo /\ (training with data + equations)
0.5 - Noisy observatic)/n/
ExaCt solution “PINN allows accurate predictions even
—— PINN solution
101, — : : : : with limited training data”
0.0 0.2 0.4 0.6 0.8 1.0

“Working well even outside the data domain”



2) a new (forward problem) solver to model system dynamics

£(9) = [iCP[NN(t = O, 6) = 1]2 -+ )\1 [CUi)INN(t = 0 9 O] + — Z mp[NN tz, + 25$i)INN(tL; 9) + wg fI:PINN(ti; 9) ]2

Boundary Conditions Equation of Motion
Training step 0 Training step 10000

1.0 1 Exact solution 105 Exact solution

—— PINN solution Traln]_ng —— PINN solution
0.5 1 0.5 -
0.0 1 _’ 0.0 -

-0.5 c e e . 0.
Minimizing
0.0 0.2 0.4 0.6 0.8 1.0 Loss
Function




3) an inverse problem solver to learn the underlying physical

parameters of the system

M
A
£(8,5,w0 = M E ((L‘p[NN(tj;O) CBom
J

Omaael)

LN
NZ zpmnn (i3 0)

Data or B.C.s

Training step 5000

1.0 ® Noisy observations
o Ao — PINN solution
(X i
0.5 o ¢
0.0 A
-0.5

0.0 0.2 0.4 0.6 0.8 1.0

Omaaal)

+ 20 zppn (i3 0) + wy umN(tng)]

Omanal)

Equation of Motion

Training step 15000

1.0 1 ® Noisy observations
o e o — PINN solution
Training 0.5 -
(@]
---------"> 0.0
-0.5 )
0.0 0.2 0.4 0.6 0.8 1.0
6 Wo
3.5 1 —— PINN estimate 20 { — PINN estimate

3.0 4
2.5
2.0 1
15
1.0 A

0.0 4

~—— True value

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Training step

—— True value

18

16 1

14 A

12 |

0 2000 4000 6000 8000 10000 12000 14000
Training step




3) an inverse problem solver to learn the underlying physical

parameters of the system

M

A 2
L(6,6,wy) = M Z (zpmnn(t530) — zons(t) )™ +
Data or B.C.s
Training step 15000
1.0 1 ® Noisy observations
® — PINN solution
0.5
@
0.0
-0.5 )
O.IO 0.'2 0.'4 0.'6 0.I8 1.l0
t
X

1.0 A

0.5 A

V' 00A

Equation of Motion

Finding potentials !!

Estimated V(x) vs True V(x)

Estimated V (z) from PINN -
=== True V(z) ==z -

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

i



Handful Examples

AdS/QCD, CMT, QI



AdS/QCD, CMT

arXiv:2401.00939 [pdf, other] cond-mat.dis-nn gr-qc hep-ph [ 10.1007/JHEP03(2024)141

( Deep Iearnina)ulk spacetime from boundary optical conductivity

Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun

arXiv:2502.10245 [pdf, other] cond-mat.dis-nn cond-mat.str-el gr-qc (B 10.1103/nh4nyinz (PRD)

( Deep Iearnina)ased holography for T-linear resistivity
Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Chang-Woo Ji, Keun-Young Kim, Kwan Yun

arXiv:2511.22522 [pdf, ps, other] cs.LG

AdS(Deep-Learnianade easy ll: neural network-based approaches to holography and inverse
problems

Authors: Hyun-Sik Jeong, Hanse Kim, Keun-Young Kim, Gaya Yun, Hyeonwoo Yu, Kwan Yun

S




Setup
2
Action S = / d*z/—g(R+ L), Lm= —%(8¢)2 2 — %Z(axf

Bulk ds® = 1 (t2—|— —dr dx)
Fields ¢’ AW gz,

“to break translational sym.”
)

,Clj(t) — g/u/ (’r) 7At (fr) : ¢(r) Damped Harmonic Oscillator
Analogy Viz) = |V(e), Z(o) 2 (t)+ 282 (1) + wiV(z) =0

{57(*}0} — 5



Z($) 2

— _Ligs @) g L 32
Setup L= =5(00)" + V(g) = 8 = 5 3 (0)

Einstein’'s equations,

LOSS Maxwell equations
L = LData + LEOM ! ’
Function Dilaton equations

QCD Equation of State . . . . . geoe
Optical Conductivit T-linear Resistivit
(Speed of Sound) P y y
“Black hole thermodynamics” “Two-point functions” opc = Zn + 52‘22 D
d logT 1 1 4P 1
Ci2=—2— — —GR ()= 2 -
5 dlogs oWw) = 350w = 5 P= ooc| a=2Zuh) A1)
0.30 1 0.7
0.25 1 0.6 1
~, 0.20 zj
O Q
0.15 1 0.3
"
0.05 0-01 ] , , | .

0.2 0.4 0.6 0.8 1.0
T

“we give horizon constraints”

TIu

“we give horizon constraints”




Results

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

l. QCD Equation of State

1
&x /=8| R~ (@4)* — V(¢)
(Speed of Sound) f ‘/_g( 2 )

“By human learning (trial-error)”

PRL 101, 131601 (2008) PHYSICAL REVIEW LETTERS 26 SEPTEMBER 2008
Thermodynamics and Bulk Viscosity of Approximate Black Hole Duals V ((P) = —12 COSh(’Y (I)) -+ b (1)2 )
to Finite Temperature Quantum Chromodynamics
Steven S. Gubser,” Abhinav Nellore,* Silviu S. Pufu,” and Fabio D. Rocha® . . .
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA Wlth ’y - 0'606 b) b - 2 '057
(Received 30 June 2008; published 23 September 2008)

N
Cs

PHYSICAL REVIEW D 78, 086007 (2008) 03sf 2+1 APPROX pure glue

Mimicking the QCD equation of state with a dual black hole w0 plackhole
025

Steven S. Gubser and Abhinav Nellore :: Lattice dat

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA ook atiice data

(Received 25 June 2008; published 29 October 2008) oosh

0.00

1 1 L 1 L TT
0 1 2 3 4 5 /.



f(z)

Results

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.
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True solution
epoch=00001
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epoch=05000
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104 ~o.
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0.01
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#(2)

\
\
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\
\
T
4,014 ---- epoch=00001
epoch=01000
3.51 ===- epoch=05000 ;
—— epoch=15000 Wl
3.01 -
2.54
2.0
1.5
1.0{ -~
0.0 0.2 0.4 0.6 0.8 1.0

1
[ @x=5(r -5 647 - V(o))
“By human learning (trial-error)”

V(®) = —12cosh(y ®) + b P2,

with ~ = 0.606, b= 2.057

"
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0.20
<E [ ]
Lattice data
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6 1
1 Z(¢) 2 1
L =—5(00) +V(p) — ——F° — = > (Oxi)?
Results 5(08)" +V(¢) — =, 2;( Xi)

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

Il. Optical Conductivity

4 — . 1 ab 1 2 2
/d T/ —¢g (R-I— 6 4FabF > Izz:l(BXI)

“Linear-axion model”: the effective toy model

A simple holographic model of momentum

EVE ]y 201
1.8
Open access | Published: 22 May 2014 . — /Bx .
Volume 2014, article number 101,(2014) Cite this article 5 1.6 X'L L
o 1.4 —_
p . . . o
Tomas Andrade N & Benjamin Withers 1o
1.0 0.8
Home > Science China Physics, Mechanics & Astronomy > Article 0.8- - gata;
' —— Data
o o " o ' ' ' ' 0.61 —— Data3
Holographic axion model: A simple o o5 1035 B S
. . © 0.4
gravitational tool for quantum matter £
Invited Review | Published: 01 june 2021 Holographic 0-21
Volume 64, article number 270001, (2021) Cite this article Optlcal conductl‘"ty 0.04 S
Matteo Baggioli, Keun-Young Kim §, LiLi &9 & Wei-JiaLi M 00 05 10 15




6 1
1
Lm =—=(00)+V(¢) — —=F*— =) (9xi)”
RESUItS 500 +V(9) - =, 2; Xi)

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

1. Optical Conductivity / oy ( Rt % Fy b % 22:( 5 XI)2>
I=1

“Emblackening Factor”
“Linear-axion model”: the effective toy model

1.0 1
0.8 1 2.0
1.81
06 1.6 Xi — 5‘2:2
N 5
(' o 1.4
0.4 - ad
1.21
0.2 -0 0.8 —— Datal
0-81 —— Data2
0.0, , , , ; : 0.0 0.5 1.0 1.5 0-61 —— Data3
0.0 0.2 0.4 0.6 0.8 1.0 w —— Data4
Z © 0.4
=
® Dots = True Solutions Holographic 2]
. Optical Conductivity oo; _—
"\ Lines = PINNs

0.0 0.5 1.0 1.5



Results

6 1

L= =587 +V(9) - T F - 03 (0x)?

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

Il. Optical Conductivity
Letter \ Published: 22 December 2005 nature

Extremely slow Drude relaxation of correlated
electrons

Marc Scheffler 83, Martin Dressel, Martin Jourdan & Hermann Adrian

Nature 438, 1135-1137 (2005) | Cite this article

Linear-axion
model with

B = 0.4825

Wo

o
-
(@]

0.05F

Conductivity (uQ1' cm)

0.00

Frequency (GHz)

“Heavy Fermion Metals”

g0

ow) = 1 —wwr

d = torch.nnjParameter(jorch.zeros(1, requires_grad=True))
w@ = torch.nf.Parameterjtorch.empty(1).uniform_(@, 50), requires_grad=True)




1
Lm =—=(00)+V(¢) — —=F*— =) (9xi)”
RESUItS 500 +V(9) - =, 2;( Xi)

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

lll. T-linear Resistivity

V(p) = GCOShi, Z(p) = e% :

V3

PHYSICAL REVIEW D 81, 046001 (2010)
Peculiar properties of a charged dilatonic black hole in AdS5

Steven S. Gubser and Fabio D. Rocha

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
(Received 30 November 2009; published 1 February 2010)

“Gubser-Rocha model”

1) Top-down string theory models
PHYSICAL REVIEW B 89, 245116 (2014)

. . . e 2) It allows the analytic background solutions
Holographic duality and the resistivity of strange metals

Richard A. Davison,':" Koenraad Schalm,'*" and Jan Zaanen'-* 3) It shows T-linear resistivity and linear specific heat
! Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA )
(Received 12 November 2013; revised manuscript received 17 May 2014; published 12 June 2014) (asin cuprate strange metals)
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Z(9)

1 1
Lm =—=(00)+V(¢) — —=F*— =) (9xi)”
Results 5(09)°+ V() — —, 2;( Xi)

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

V(g) ~ evi?
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DN |

1 Z(¢) o] 1<
Lm = —-(00)* +V(¢p) — ——F°}- dxi)’
Results ROV ﬂ

Mostly, we haven't found anything new yet, but the consistency with
standard holography results, and some interesting observations.

ithin the EMDA theorigs (3.1) [24-27, 36-43], where
.)“|is simplified to|Y (¢) = 1) the corresponding

IR geometry takes the form™o 7 geometry:
—dt? + £2d¢2 22 2(1 4 n)?
2 — —Mn 2 - = . 4.].

Here, the scaling parameters satisfy

¢
Z — 00, 0 — —o0, 0/z— —n. [Vir(¢) ~ Zir(¢) ~ eV3

In this geometry, the resistivity and entropy scale at low T as
Consistent with the

~T" ~T",. .
P o f IR Geometry Analysis



AdS/Ql

arXiv:2406.07395 [pdf, other] cond-mat.dis-nn  gr-qc (A 10.1007/JHEP01(2025)025

Holographic reconstruction of black hole spacetime{machine Iearnir@and entanglement entropy

Authors: Byoungjoon Ahn, Hyun-Sik Jeong, Keun-Young Kim, Kwan Yun




Action

Bulk
Fields

DNNs

o Area(7y)

Setup ow

Bulk Reconstruction

° > ﬁ o
We do not need the action : \g;\c.n .
L? dz?
4" = 2 | ) 1+ W h(z (dx2 + dyz)] “Coordinate
transformation”

“General homogenous (isotropic) metric”

ds® = —D(r) dt? + B(r) dr? + C(r) d&?

f or h

U



Holographic Entanglement Entropy

Entanglement entropy in the boundary theory can be computed from
the extremal surface in the higher dimensional gravity theory

o _ Area(y)
- 4G N Extremal
surface ~a
= S(¢)
Y
2 7 TZ.:C
4
+5




Holographic Entanglement Entropy

Entanglement entropy in the boundary theory can be computed from
the extremal surface in the higher dimensional gravity theory

“Induced metric at time slice”

S — Area(’)/) Area('y) - / dydz V det%“’ “Finding the ext. area by
4G N Euler-Langrangian method”
= S(4
S( ) ds® = 5—22 l—f(z)dt2 + ;(—j + h(z) (da:2 + dy2>]

2 Zx 'aal 2 x
S:LQ/ 12 i dZ, 622/ ! - L doz,
2GN Je 2 \ 1— % 0 zf _ 1 Mh(@)f(a)
h(zx)?jat



central charge of the CFT

One more thlng oo Example: 1+1 CFT  Sq = E1ogé + finite B A B

3 D .
UV cut off 6

g L?Q) /Z* 1 h(z) 1 n
2G N Je 22\ 1 — i: f;l((z;)); V(2
L2Q Zx ] zZx ] h(z) 1
“a |l #h Jl—z“’%&é e )
- L2Q
- 2GN
L*Q [
2GN € ’ horlzon
LOSS ‘\boundary
. Z ) Ig‘?z)lte SFinite(E)’ + |3(m) — S
Function

Technical Reason
(Must satisfy by construction)



ds? = L

Bulk Reconstruction

(Without Machine Learning)

Output Input

Handbook of 2 1 ,
integral eqns m: / \/G ze) — G(z dz’ Glz) >0
Zx G/
(Selution) -: rdz Jo /G )(i) G(z'

For the simple 2GNn S( z* / V1/f(z ) 1 G
metric L2Q) v z4 — LAl 22 —

h(z) —1 ds(¢)  L?*Q 1
d/ B 4GN Z,,%

dz 2
—f(z)dt? + it (de? + dy )]

S(z4)| dzs

We do not need ML to reconstruct the bulk from EE when metric is simple



Bulk Reconstruction

(Example) h(z) =1

2

f(z)—l—ﬁ—zz —(1—ﬂ—2+u2)z3+

Given holographic
entanglement entropy

— (u, B)=(0.5,0.5)
— (4, B)=(0.5,1.0)
— (i, B)=(1.0,1.5)

00 05 1.0 15 20 25 3.0
!

1 1 3

/d4:c\/—_g (R +6 — - FF% — = 2:(3)(1)2

4 21—

“Linear-axion model”: the effective toy model

8GN 2 d

7TL2Q / 24— z4

) dz,

Bulk reconstruction
without machine learning

1.0
0.8
06
N
Y
0.4
—— (u, B)=(0.5,0.5)
021 — (u,B)=(0.5,1.0)
prm— ,B)=(1.0,1.5
oo (1, B)=(1.0,1.5)
0.0 0.2 0.4 0.6 0.8 1.0
Z



Bulk Reconstruction

(Limitation)

For the generic metric, ML becomes very powerful (necessary) for reconstruction

h(z) #1  (This is very very common situation in holography)

ds? = = [—f(z) dt? + a2 + h(z) (d:l:2 + dy2>]

f(2) Same S(24)

Information
(See details in our paper)
Output Input

223h(2y) — 22h (24) i

2h(z4)3
Zx )2
Single information
* ds L?Q h(z,) “Unless h(z) is provided, this method cannot
¢ 4G N 23 fully reconstruct the metric”

But, two outputs



Bulk Reconstruction

(Machine Learning Example I)

Given holographic

entanglement entropy
— (u4,8)=(0.5,0.5)
— (u,B)=(0.5,1.0)
| — (14, B)=(1.0,1.5)
00 05 1.0 15 20 25 3.0

4

@ Dots = True Solutions

"\ Lines = PINNs

/d4:v\/—_g (R +6 — ~FpF% — = Z(aXI)z

“Linear-axion model”: the effective toy model

1.0 1
0.8 1

0.6 1

f(z)

2.0
1.5
N0
0.5 1

0.0 1

1 13

4 21

Bulk reconstruction
with machine learning

0.4+

0.2

0.0 1

— (4, B)=(0.5,0.5)
— (1, B)=(0.5,1.0)
— (4, B)=(1.0,1.5)

00 02 04 06 08 1.0
V4

— (4, B)=(0.5,0.5)
— (1, B)=(0.5,1.0)
— (1, B)=(1.0,1.5)

)



Bulk Reconstruction

(Machine Learning Example II)

Given holographic

entanglement entropy
— (u.B)=(0.5,0.5)
— (1, B)=(0.5,1.0)
— (4, B)=(1.0,1.5)
00 05 1.0 15 20 25 3.0

[

@ Dots = True Solutions

"\ Lines = PINNs

V(¢) = 6 cosh i, Z(¢) = e%

V3

“Gubser-Rocha model”

Bulk reconstruction
with machine learning

1T — (1. B)

(0.5,0.5)
(0.5,1.0)
(1.0,1.5)

(1, B)

(1, B)

00 02 04 06 08 1.0
Z

— (14, B)=(0.5,0.5)
— (14, B)=(0.5,1.0)
™ (IJ;B)=(1-O,1.5)

Y

00 02 04 06 08 1.0



Bulk Reconstruction

(Machine Learning Example III)

(] [ ] :O\(j
Given holographic g
entanglement entropy
— T/T,=1.4
— T/T=0.75
— T/T,=0.4
00 05 1.0 15 20 25 3.0
/4

@ Dots = True Solutions

"\ Lines = PINNs

10 1

o N ESy (o)) o]

02 04 06 08 10 12 14
T/T.

S=/d4x\/—g (R—I—G—Z

1.0
0.8 1

0.6 1

h(z)

0.4 1

0.2 1

0.0 1

— T/T-=0.4

1
F? — |D®|* - m2|<I>|2)

“Holographic Superconductor”

Bulk reconstruction
with machine learning

— TIT.=1.4
1 — T/T.=0.75

04 06
Z

0.0 02

— T/Tc=1.4
— T/T=0.75
— T/T.=0.4

06 0.8 1.0

4

00 02 04



2 2
[ L dz
Bulk Reconstruction ds® = —5 | =f(2) dt* + 27 + h(z) da”
2 f(2)
° ° Dual
(MaCh"le Learnlng Example IV) “AdS_3 metric” <4—— “(1+1) dimensional system”
{4
S = 2£N log [2 sinh (;)] ScrT = 3 log L% sinh (Wﬁ )}
. . 777 .
Given non-holographic - ) Bulk reconstruction
entanglement entropy with machine learning
PHYSICAL REVIEW LETTERS 127, 040603 (2021) 4F . . :'2:;; e — 2'33 ' ' '
{6238 . £Z3-u
3F 2 e=279 e=2"1° -
o e = 2—10 + e = 2—19

. o e=2"1 — ge. fet.

Eigenstate Entanglement: Crossover from the Ground State to Volume Laws = 9 - _
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1t 0 5 10 15 20 25 30 A

To confirm this numerically, we sample energy eigenstates . . ' . . . ,
|E,,) from small windows of width AE around energies E for 0 1 2 3 4 5 6 £/3

fermionic tight-binding chains H = (&'e, )
> €ty at half filling [65]. These obey Weak ETH and are
r - - ]

FIG. 1. Entanglement entropies of randomly sampled eigen-
states for a fermionic tight-binding chain with half filling (u = 0,
v =2), system size L ~4 x 10°, excitation energy densities

o o N e = (E — E,)/|Egs|, and window size AE = 1. The main panel
Slmllar to CFT_Z resurt pn=Tr BIE n><En| confirms the data collapse to the crossover scaling function (7).

e o The inset asserts the validity of the ETH by comparison to GCE
(so, similar to BTZ as well?) subsystem entropies (lines).




Bulk Reconstruction

— (u, B)=(0.5,0.5)

(Machine Learning Example IV) |

00 02 04 06 08 10 00 02 04 06 08 10
V4 V4

“Gubser-Rocha model”

. . 777 .
Given non-holographic - . Bulk reconstruction
entanglement entropy with machine learning

10 -
- TB chain N TB chain
N 1.0 N 6
N BTZ <
0.5 1
21 BTZ

0.0 -

00 02 04 06 08 1.0 00 02 04 06 08 1.0
Z Z

The emergent bulk spacetime is not similar to BTZ geometries, instead..

Gubser-Rocha type.. the similarity is due to the metallic property??



Conclusion



Universal Approximation Theorem PINNs, Neural ODEs

Neural networks are simply flexible functions fit to data

New Prediction
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