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GW Astronomy in Two Bands

e Ground-based (Hz-kHz): LIGO/Virgo/KAGRA = stellar-mass mergers.
@ Space-based (mHz): LISA / TianQin / Taiji = EMRIs, massive BH binaries, DWDs.

e Open question: do near-horizon nonlinearities (chaos) leave robust imprints in EMRI
waveforms?
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Why EMRIs? Why Chaos?

e EMRI: compact secondary (m < M) orbits MBH for ~ 105-10° cycles = high-fidelity
probe of strong gravity.
o Non-integrabilities near horizon (with environment) = onset of chaos, broken KAM tori.

@ Goal: connect phase-space chaos <> observable GW signatures.
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Astrophysical Motivation: Dark Matter Halos

@ SMBHs live in galaxies embedded in DM halos.
e DM modifies spacetime in the nuclear region (effective metric corrections).

@ We model a Schwarzschild-like BH immersed in a Dehnen (a, 5,v) = (1,4,5/2) halo;
study test-particle chaos and its GW imprint.

5/34



Dehnen Density Profile

@

) (a7/877):(17435/2)'

o(r) = ps () [ () 11

@ ps: characteristic density; rs: scale radius.

o Cumulative mass: Mpy(r) = 4 [y p(x) x? dx.
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From Tangential Velocity to Redshift Function

Consider the DM-dominated SSS metric

) Integration
dr
2 _ _ 2 2402 A 2v3
ds A(r)dt® + B(r) +rdi. Integrate A= % to obtain A(r).

For circular orbits in a static geometry,

rA'(r)
2A(r)

v,%:r%(lnﬂ) =

For Dehnen (1,4,5/2) one finds

M 3
Br) = Moulr) _ 8ot fy 5
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BH immersed in Dehnen halo

Redshift Function and Leading-Order Approximation

)

A(r) = exp [—327rp5r52 \/ ! —’; s
A(r) = 1—32mpsr? y/ rrs (leading order).
r

o We adopt the simplifying and accurate SSS ansatz A(r) = B(r).

@ Embed a Schwarzschild BH as a correction on top of the halo metric.
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BH immersed in Dehnen halo

Combined BH+DM Spacetime

ds? = —f(r) dt* + ar + r?dQ?
f(r) ’

2M
f(r):1—7—327rp5r52 r+rs.

@ Reduces to Schwarzschild for ps=0 or rs=0.

@ DM terms increase effective horizon size.
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Painlevé—Gullstrand (PG) Coordinates

1—1(r)
f(r)

ds? = —f(r) dt? +2y/1 — f(r) dt dr + dr® + r?dQ>.

Time transform: dt — dt — dr.

@ Regular across ryg; robust for near-horizon numerics.
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Dynamics near the horizon

Constants of Motion and Dispersion

In PG coordinates, with canonical momenta p,:

g pupy =—m?,  E=-(W.p  L=¢®)p

For motion in meridional plane {r, ¢},

/ 2
p
E=—\1—f(r)p, + p?—l—r—g—l—mQ.
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Dynamics near the horizon

Confining Potentials and Physical Rationale

@ Add integrable harmonic potentials to prevent plunge/escape:
Vext = %Kr(r - rc)2 + %qu rI?I(CZ) - ¢c)2'

e Chaos originates from near-horizon unstable structure (inverted-oscillator-like peak in
effective potential), not from the harmonic terms.

@ Enables long, controlled near-horizon evolution to probe onset-of-chaos.
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Total Energy with Confinement

p2 K K
E(r,0,pr,ps) = —/1— F(r) pr + p2+r—§+m2+7r(r—rc) ¢’r§(¢ bc)>.
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Dynamics near the horizon

Equations of Motion

f:%:—~/1—f(r)+ Pr
pr

PR+ P2/ 4 m?

. OE f'(r) Py
Pr: _—— = - pr+ —Kr(r_rc).
or 2\/1—f(r) ,3\/pg+p£/,2+m2
b= JE _ (ps/r?)
opg \/p2+p2/r2+m2’
r ¢
. OE
P¢:—%:—K¢ﬁz{(¢—¢c)'
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Dynamics near the horizon

Numerical Setup

@ Mass ratio m/M ~ 107°; choose K, Ky, re, ¢c to keep motion near horizon.

o Integrator: 4th-order Runge—Kutta; fixed step h ~ 10~2 (dimensionless units with
G=c=1).

e Sample initial conditions: r € (3.0,3.8), p, € (—0.5,0.5), ¢ € (—0.05,0.05); determine
pg from fixed E.
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Chaos diagnostics

Poincaré Section Construction

@ Take section at ¢ = 0 with pg > 0.
@ Plot intersections in (r, p,) for fixed E.

@ Closed KAM curves = regular; broken tori/scatter = chaos.
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Chaos diagnostics

Energy Scan ( r; = 0.15, ps = 0.02)

e Low E: intact KAM tori (regular motion).
@ Intermediate E: distorted tori = onset of chaos.
@ High E: widespread scatter = fully chaotic.
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Halo Scan at fixed E and r;

Fix rs = 0.15, E = 90; vary ps.

@ Increasing ps = larger effective horizon, stronger nonlinearity.

@ Regular — onset — chaotic as ps grows.

120, > P00t

p004
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Halo Scan at fixed E and ps

Fix ps = 0.01, E = 115; vary rs.
@ Larger rs has similar effect; chaos at higher rs values.

@ Regular — onset — chaotic as rs grows.

&0 027
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Chaos diagnostics

Lyapunov Exponents: Definitions

1
Amax = lim —In

oo 7 6X(0)’

A, : separation measured of two trajectories in phase-space.

@ Practical computation: evolve two nearby trajectories; calculate separation in large time

limit.
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LE Results (Qualitative)

@ )\, increases with E, also with ps and rs.

I Lyapunov Exponent

Total Lyapunov Exponent
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Kludge Strategy

© Compute geodesic-like trajectory in BH+DM spacetime (PG coords).
@ Map (r, 0, ¢) to flat-space spherical, then to Cartesian: x = rsinf cos ¢, etc.

@ Use flat-space wave-generation (quadrupole) on that trajectory.

Rationale

Trajectory accuracy = essential waveform morphology retained even with simplified radiation
model.
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Numerical Kludge Waveforms

From Linearized Gravity to Quadrupole

uv = Nuv + h/u/’ /_7/J,IJ = hul/ - %nuuhv
doh'* =0,  OW" =—167T".

Retarded solution:

hi(t, ) :4/d3x’ (e — x = x|, x)

x — x|

Slow-motion limit = quadrupole formula

i 2 ... ) o
h(t,x) = . 1(t—r), Y= /d3X/X/’X/J 700
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Numerical Kludge Waveforms

Point Particle Source and h;;

For a point mass m at x,(t'):

dxp dx, dr
Y Iy — 7P 5(3)
TH(t',x)=m—— dT . S (X

/ /
~ mutu” 53 (x —xp(t")).
In the slow-motion regime one obtains

2m

hi =5

(a Xj + ajx; + 2v,vJ>

~xp(t) 5.

where x, v, a are position, velocity and acceleration along the mapped trajectory, and D; is the

luminosity distance.
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Numerical Kludge Waveforms

Detector Frame and Polarizations

Define detector-aligned basis (X, Y, Z) with inclination ¢ and pericenter longitude (:

ex = (cos(,—sinC,O),
ey = (sinesin(, —costcos(, —sint),

ez = (sincsin(, —sintcos (, cost).
Polarizations:
(exex — eyey)hi,

(ekey + ey el )hy.

h+:

>

X

Il
NI= N[=
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Waveform Morphology

@ Regular orbit = quasi-periodic hy, hy with narrow-band spectrum.
@ Onset-of-chaos = visible amplitude/phase modulations; sidebands.

@ Chaotic = irregular amplitude, broadband features, recurrent bursts.
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Numerical Kludge Waveforms

Waveform structures
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Numerical Kludge Waveforms

Power Spectral Density

Frequency spectra of + mode for r, =0.15 and p, = 0.02

Frequency spectra of + mode for r, = 0.15 and =90
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Comparisions of Characteristic strain (for different E)

Form rg =0.15, ps =0.02 with different values of E
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Numerical Kludge Waveforms

Comparisions of Characteristic strain (for different ps)

Characteristic Strain Sensitivity

For r¢=0.15, E =90 with different values of ps
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Numerical Kludge Waveforms

Comparisions of Characteristic strain (for different r;)

For ps=0.01, E =115 with different values of rg
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Implementation details

Limitations and Assumptions

@ Test-particle limit; neglect self-force and backreaction on halo.

o Leading-order DM effect in f(r); A(r) = B(r) simplification.
o Kludge waveforms: accurate trends, not precision templates.
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Implementation details

Conclusions and Outlook

DM halos can catalyze onset of chaos in near-horizon EMRI dynamics.

Poincaré maps and Lyapunov exponents quantify transition.
Kludge GWs show distinctive chaotic imprints (amplitude/phase irregularity, spectral
broadening).

o Next: Kerr backgrounds with halo, include radiation reaction/self-force, parameter
estimation for chaos.
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Thanks for listening!
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