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Motivation

GW Astronomy in Two Bands

Ground-based (Hz–kHz): LIGO/Virgo/KAGRA ⇒ stellar-mass mergers.

Space-based (mHz): LISA / TianQin / Taiji ⇒ EMRIs, massive BH binaries, DWDs.

Open question: do near-horizon nonlinearities (chaos) leave robust imprints in EMRI
waveforms?
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Motivation

Why EMRIs? Why Chaos?

EMRI: compact secondary (m ≪ M) orbits MBH for ∼ 105–106 cycles ⇒ high-fidelity
probe of strong gravity.

Non-integrabilities near horizon (with environment) ⇒ onset of chaos, broken KAM tori.

Goal: connect phase-space chaos ↔ observable GW signatures.
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Motivation

Astrophysical Motivation: Dark Matter Halos

SMBHs live in galaxies embedded in DM halos.

DM modifies spacetime in the nuclear region (effective metric corrections).

We model a Schwarzschild-like BH immersed in a Dehnen (α, β, γ) = (1, 4, 5/2) halo;
study test-particle chaos and its GW imprint.
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BH immersed in Dehnen halo

Dehnen Density Profile

ρ(r) = ρs

(
r

rs

)−γ
[(

r

rs

)α

+ 1

] γ−β
α

, (α, β, γ) = (1, 4, 5/2).

ρs : characteristic density; rs : scale radius.

Cumulative mass: MDM(r) = 4π
∫ r
0 ρ(x) x2 dx .
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BH immersed in Dehnen halo

From Tangential Velocity to Redshift Function

Consider the DM-dominated SSS metric

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dΩ2.

For circular orbits in a static geometry,

v2D = r
d

dr

(
ln
√
A
)
=

rA′(r)

2A(r)
.

For Dehnen (1, 4, 5/2) one finds

v2D(r) =
MDM(r)

r
=

8πρsr
3
s

r

√
1 +

rs
r
.

Integration

Integrate
A′

A
=

2v2D
r

to obtain A(r).
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BH immersed in Dehnen halo

Redshift Function and Leading-Order Approximation

A(r) = exp

[
−32πρsr

2
s

√
r + rs
r

]
,

A(r) ≈ 1− 32πρsr
2
s

√
r + rs
r

(leading order).

We adopt the simplifying and accurate SSS ansatz A(r) = B(r).

Embed a Schwarzschild BH as a correction on top of the halo metric.
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BH immersed in Dehnen halo

Combined BH+DM Spacetime

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2dΩ2,

f (r) = 1− 2M

r
− 32πρsr

2
s

√
r + rs
r

.

Reduces to Schwarzschild for ρs=0 or rs=0.

DM terms increase effective horizon size.
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Dynamics near the horizon

Painlevé–Gullstrand (PG) Coordinates

Time transform: dt → dt −
√
1− f (r)

f (r)
dr .

ds2 = −f (r) dt2 + 2
√

1− f (r) dt dr + dr2 + r2dΩ2.

Regular across rH; robust for near-horizon numerics.
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Dynamics near the horizon

Constants of Motion and Dispersion

In PG coordinates, with canonical momenta pµ:

gµνpµpν = −m2, E = −ζ(t) · p, L = ζ(φ) · p.

For motion in meridional plane {r , ϕ},

E = −
√

1− f (r) pr +

√
p2r +

p2ϕ
r2

+m2 .
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Dynamics near the horizon

Confining Potentials and Physical Rationale

Add integrable harmonic potentials to prevent plunge/escape:

Vext =
1
2Kr (r − rc)

2 + 1
2Kϕ r

2
H(ϕ− ϕc)

2.

Chaos originates from near-horizon unstable structure (inverted-oscillator-like peak in
effective potential), not from the harmonic terms.

Enables long, controlled near-horizon evolution to probe onset-of-chaos.

12 / 34



Dynamics near the horizon

Total Energy with Confinement

E (r , θ, pr , pϕ) = −
√
1− f (r) pr +

√
p2r +

p2ϕ
r2

+m2 +
Kr

2
(r − rc)

2 +
Kϕ

2
r2H(ϕ− ϕc)

2.
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Dynamics near the horizon

Equations of Motion

ṙ =
∂E

∂pr
= −

√
1− f (r) +

pr√
p2r + p2ϕ/r

2 +m2
,

ṗr = −∂E

∂r
= − f ′(r)

2
√

1− f (r)
pr +

p2ϕ

r3
√
p2r + p2ϕ/r

2 +m2
− Kr (r − rc).

ϕ̇ =
∂E

∂pϕ
=

(pϕ/r
2)√

p2r + p2ϕ/r
2 +m2

,

ṗϕ = −∂E

∂ϕ
= −Kϕ r

2
H(ϕ− ϕc).
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Dynamics near the horizon

Numerical Setup

Mass ratio m/M ∼ 10−5; choose Kr ,Kϕ, rc , ϕc to keep motion near horizon.

Integrator: 4th-order Runge–Kutta; fixed step h ∼ 10−2 (dimensionless units with
G = c = 1).

Sample initial conditions: r ∈ (3.0, 3.8), pr ∈ (−0.5, 0.5), ϕ ∈ (−0.05, 0.05); determine
pϕ from fixed E .
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Chaos diagnostics

Poincaré Section Construction

Take section at ϕ = 0 with pϕ > 0.

Plot intersections in (r , pr ) for fixed E .

Closed KAM curves ⇒ regular; broken tori/scatter ⇒ chaos.
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Chaos diagnostics

Energy Scan ( rs = 0.15, ρs = 0.02)

Low E : intact KAM tori (regular motion).

Intermediate E : distorted tori ⇒ onset of chaos.

High E : widespread scatter ⇒ fully chaotic.
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Chaos diagnostics

Halo Scan at fixed E and rs

Fix rs = 0.15, E = 90; vary ρs .

Increasing ρs ⇒ larger effective horizon, stronger nonlinearity.

Regular → onset → chaotic as ρs grows.
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Chaos diagnostics

Halo Scan at fixed E and ρs

Fix ρs = 0.01, E = 115; vary rs .

Larger rs has similar effect; chaos at higher rs values.

Regular → onset → chaotic as rs grows.
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Chaos diagnostics

Lyapunov Exponents: Definitions

λmax = lim
τ→∞

1

τ
ln

δX (τ)

δX (0)
,

λr : separation measured of two trajectories in phase-space.

Practical computation: evolve two nearby trajectories; calculate separation in large time
limit.
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Chaos diagnostics

LE Results (Qualitative)

λL increases with E , also with ρs and rs .
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Numerical Kludge Waveforms

Kludge Strategy

1 Compute geodesic-like trajectory in BH+DM spacetime (PG coords).

2 Map (r , θ, φ) to flat-space spherical, then to Cartesian: x = r sin θ cosφ, etc.

3 Use flat-space wave-generation (quadrupole) on that trajectory.

Rationale

Trajectory accuracy ⇒ essential waveform morphology retained even with simplified radiation
model.
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Numerical Kludge Waveforms

From Linearized Gravity to Quadrupole

gµν = ηµν + hµν , h̄µν = hµν − 1
2ηµνh,

∂αh̄
µα = 0, □h̄µν = −16πTµν .

Retarded solution:

h̄ij(t, x) = 4

∫
d3x ′

T ij(t − |x− x′|, x′)
|x− x′|

.

Slow-motion limit ⇒ quadrupole formula

h̄ij(t, x) =
2

r
Ï ij(t − r), I ij =

∫
d3x ′ x ′ix ′jT 00.
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Numerical Kludge Waveforms

Point Particle Source and hij

For a point mass m at xp(t ′):

Tµν(t ′, x′) = m
dxµp
dτ

dxνp
dτ

δ(3)(x′ − xp(t
′))

dτ

dt ′
,

≈ muµuν δ(3)(x′ − xp(t
′)).

In the slow-motion regime one obtains

hij =
2m

DL

(
aixj + ajxi + 2vivj

)
,

where x, v, a are position, velocity and acceleration along the mapped trajectory, and DL is the
luminosity distance.
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Numerical Kludge Waveforms

Detector Frame and Polarizations

Define detector-aligned basis (X ,Y ,Z ) with inclination ι and pericenter longitude ζ:

eX = (cos ζ,− sin ζ, 0),

eY = (sin ι sin ζ,− cos ι cos ζ,− sin ι),

eZ = (sin ι sin ζ,− sin ι cos ζ, cos ι).

Polarizations:

h+ = 1
2(e

i
X e

j
X − e iY e

j
Y )hij ,

h× = 1
2(e

i
X e

j
Y + e iY e

j
X )hij .
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Numerical Kludge Waveforms

Waveform Morphology

Regular orbit ⇒ quasi-periodic h+, h× with narrow-band spectrum.

Onset-of-chaos ⇒ visible amplitude/phase modulations; sidebands.

Chaotic ⇒ irregular amplitude, broadband features, recurrent bursts.
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Numerical Kludge Waveforms

Waveform structures
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Numerical Kludge Waveforms

Power Spectral Density
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Numerical Kludge Waveforms

Comparisions of Characteristic strain (for different E)
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Numerical Kludge Waveforms

Comparisions of Characteristic strain (for different ρs)
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For rs = 0.15, E = 90 with different values of s

LISA Detectable Region
LISA Sensitivity
TianQin Detectable Region
TianQin Sensitivity
Taiji Detectable Region
Taiji Sensitivity
Non-chaotic ( s = 0.01)
Onset-of-chaos ( s = 0.04)
Chaotic ( s = 0.05)
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Numerical Kludge Waveforms

Comparisions of Characteristic strain (for different rs)
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For s = 0.01, E = 115 with different values of rs

LISA Detectable Region
LISA Sensitivity
TianQin Detectable Region
TianQin Sensitivity
Taiji Detectable Region
Taiji Sensitivity
Non-chaotic (rs = 0.10)
Onset-of-chaos (rs = 0.25)
Chaotic (rs = 0.27)
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Implementation details

Limitations and Assumptions

Test-particle limit; neglect self-force and backreaction on halo.

Leading-order DM effect in f (r); A(r) = B(r) simplification.

Kludge waveforms: accurate trends, not precision templates.
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Implementation details

Conclusions and Outlook

DM halos can catalyze onset of chaos in near-horizon EMRI dynamics.

Poincaré maps and Lyapunov exponents quantify transition.

Kludge GWs show distinctive chaotic imprints (amplitude/phase irregularity, spectral
broadening).

Next: Kerr backgrounds with halo, include radiation reaction/self-force, parameter
estimation for chaos.
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Implementation details

Thanks for listening!
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