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The plan of this talk

1. Motivations

2. Solutions to the source-free Maxwell equations in
the Einstein-Maxwell system:

3. Solutions to the source-free Maxwell equations in
the Einstein-Maxwell system:

4. Summary and discussions



1. Motivations

- -rolational velocity
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The absence of a clear explanation for dark matter and dark
energy is igniting interest in modified theories of gravitation. In
addition, the ongoing need for precise descriptions of
astrophysical phenomena continues to propel research into
finding and analyzing various solutions that incorporate matter
fields beyond the vacuum solution.
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Artist's conception of a wormhole. (Image credit: Shutterstock)

As one of the most fantastical solutions allowed by Einstein's
theory, the wormhole solution, including time travel, has become
an object of interest and awe for scientists and the public alike,
as well as a great subject for study, fiction, and movies.



Charge without charge: electric field by a wormhole

AMNALS oF pHYSics: 3, 525-603 (1957)

CLASBICAL GEOMETRODYNAMICS

Classical Physics as Geometry

Gravitation, Electromagnetism, Unguantized Charge, and Mass as
Properties of Curved Empty Space*

Cuarrtes W, Missent anp Joox A, WHeELER]

Lorentz Institule, University of Leiden, Leiden, Netherlands, and Palmer Physical
Laboratory, Princeton [Tniversity, Princeton, New Jersey

If classical physics be regarded as comprising gravitation, source free elec-
tromagnetism, unquantized charge, and unquantized mass of concentrations
of electromagnetic field energy (geons), then classical physics can be deseribed
in terms of curved empty space, and nothing more. No changes are made in
existing theory. The electromagnetic field is given by the “Maxwell square
root’" of the contracted curvature tensor of Ricel and Einstein. Maxwell’s equa- F1g. 3. Symbolie representation of the unquantized eharge of classical theory. Foi

Misner and Wheeler highlighted the importance of this
solution to the source-free Maxwell equations, noting that the
electric field enters one side of the wormhole and exits the other.
The full realization of this concept would require finding a
charged wormbhole solution.



GEONS, BLACK HOLES, AND QUANTUM FOAM
W. W. NORTON & COMPANY
Copyright © 1998 by John Archibald Wheeler and Kenneth Ford

The idea of “charge without charge”: Electric field lines that
seem to begin at one place and end at another may be
connected, thanks to a wormhole in “multiply connected”

space.
(Drawing by John Wheeler.)



2. Solutions to the source-free Maxwell
equations: with charge

« We consider the action

I:/ w—ga"j‘;r.[ K !
.."'\I/I

160G 167

F&.ﬁF“-ﬁ] + 1,

We obtain the Einstein field equations from the variation

1 _
B;w - §Q;WR — 8;’1-(_;.]1&1.?

where 1 1

.TI{LH — E (F,LLQFL;& - EQ;LUFQ_BFQIIR)

and the source free Maxwell equations

1
VI = ﬁ[ﬁ“w—yF ) =0

Bianchi identity
VFo +V,F,+V,F,, =0,F, +0,F,,+0,F,, =0



 In the Einstein-Maxwell system, to obtain the self-gravitating
solution

(1) One takes the metric ansatz.
(2) One solves the (source free) Maxwell equations.

(3) The solution to the Maxwell equations is then
substituted into the energy-momentum tensor in order
to solve the Einstein equations.

« When employing a solution generating method

(1) First, one uses a solution generating method to find
the solution to the Einstein equations.

(2) Solve the Maxwell equations in the geometry of the
solution to the Einstein equations in order to obtain that
solution.



« We consider static spherically symmetric geometry (for a
black hole)

. . 172 __
ds? = —f(r)dt? + = + r2d0}
g(r)
YRR i’ >
= —f(;-.)f;ff_z+f(:‘)h(r) L r2d02 .

Here, we will think about a RN black hole eventually, thus we
take

dr?

Fir)

After we will show the components of the energy-momentum
tensor. Then | will explain why this choice was made.

ds? = —f(r)dt? + —I—?‘Qfﬁ?g



« The source free Maxwell equations: the electric field

V1 = ——[8,(v/=gF"™)] = 0

for pu=t, v=r: 9,(r’sinhE) =0
for u=r,v=0: 9 (+2sinhE) =0

The integration constant emerges. By comparing it to the
classical electromagnetic case (Gauss's law), one could
guess that the integration constant corresponds to the
charge located at the origin.

(
= b= ©

-2 . (QQ = const.)
r
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« The source free Maxwell equations: the magnetic field

Vb, +V,.F,,+V,F, =0,F, +0,F,,+ 0,

for p=t, u=6, v=@ : 9,(r*sinfB) =0

for p=r, u=06, v=@ : 9,(r*sinfB) =0

= B =
—1
E? + B? 0
Bo—
= T” QT 0
0

— traceless Tﬁt‘:[l

P
r2’

—

0
0

0

0
0
0
1

(P = const.)

QP+ P

R=10

Sl

—1
0
0
0

F

P

0
—1
0
0

=0

0
0
0
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« The energy-momentum tensor

Ty = diag(—e,p,. po, py), Pr(r) = —(r), po(r) =py(r) =<(r).
e 000
0 -Z 0 0
0 0 = 0
0 0 0o <

b.hf':

Q2

Smrd

I
e

£(r)

—

The Maxwell charge is present in the energy-momentum
tensor, which causes divergence at r = 0. However, the

quantity that corresponds to the mass of a black hole is not
present in the energy-momentum tensor.

Property of the metric function, (when f(r)=g(r))

_ ~_ g ()= f(r)g'(r) _

pf' +‘* — i"f{?') — 0
The radial pressure is the same as the negative of the energy
density. For the black hole written by

ds® = —f(r)dt* + . + r2dQ?
f(r)
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« We check the components of the Einstein tensor

L f() | f) _ G@+ 1)

- TT__I_QjL 2 N r 4
- dr[jf(‘)]_rf%_f_l_ .,,2 )

2GM  G(O? + p?
— f(?) —1— - 4 ( 2?12 )

(7,40 = R, #0, R=0]

The Kretshmann scalar

1G2 Q! 48 GO?\* | G2
Rﬁc-uRﬂV — ic Q . Rﬁwﬂ' Rr‘”"o‘j l(G M — h ) + 2

re r 76 r G2

|
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« One can employ the Newman-Janis algorithm to obtain the
rotating black hole geometry.

[ Schwarzschild (1916) ] [ Kerr (1963)]

Newman and Janis, JMP 6, 915 (1965)

Reissner — Nordstrom
(1916, 1918)

[ Kerr-Newman (1965) ]

Newman, Chinnapared, Exton, Prakash and
Torrence, JMP 6, 918 (1965)

14



« The Kerr-Newman black hole geometry

ds® = —F(r,0)dt* —2[1 — F(r,0)]asin® Odtdo + = sin® 0d¢* + %drz + pde*
pe
3 E J .1. Qg . L ] L E g [ Iy
= —Z(dt — asin®0d¢)® + ——[adt — (r* + a®)dd]® + Edr® + p?de?,
p p VA

2Mr ( 2

where r(ro) =1 2Mr @
pr P

P> =12+ a%cos?f, ¥ = (r2 + a?)? — a?Asin? 6, and A = p?F(r,8) + a®sin? 6

« Let us consider physical quantities in an orthonormal
frame, (¢;.cr,¢5.¢;) , introduced by Carter(1968), in which the
stress-energy tensor for the anisotropic matter field is diagonal,

t f_}\/ﬁ . r f_} :
H (0,0,1,0) u (asin?6,0,0,1)
ef = /1=, ei=— |
P ¢ psin @
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« The components of the energy-momentum tensor are
expressed in terms of Guv as

o . L oy o — M 277Y > N - H Yl o _— H vt
(.\)/\; — (/I’*( ," (7/”/- (SH[), = ¢ ,’;(II‘.("I”/- b“/)(} To— (()(I()CTlI,/- b/tl)(" S— (’f)( (;(7/”/.
It gives 0 @ =@
—_ —_ e} = — v 2= |ps) =
\—I,I- Pi l: ) \:Jrll' ¢ ¥ \—]ra'

The Maxwell tensor can be obtained as follows:

F, = —F,= C—_gl(ag cos’f —r?), Fp=—Fp = %[’_agrsin 20) ,
p p
Q .9, 2 3 2 Q 2 o
Fro = —F4 = Ea sin“ f(a“cos” 0 —r°), Fpy=—Fyo = Ear sin 26(r° + a”) .
and
r_ i Q.9 9 9,09 9 w_ poe @, o
F7" = —F"=—=(r"—a"cos”0)(r" +a”), F"=-F"=—(—a"rsin20),
p p
| . ( L , . . (
F'" = —F = p—ia{clz cos’0 —r?), F% =_F% = p—i?ar cot 6.
The Maxwell tensor satisfy the source-free Maxwell equations.
7 s 1 ‘ — ]
Vil = = [0u(V=gF*")] = 0
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« When the Newman-Janis algorithm does not apply

Obtaining the rotating black hole solution becomes a
challenging study when the Newman-Janis algorithm is
not well defined in the geometry.

(1) If the seed black hole has the metric with f(r) # g(r).
(2) If the seed black hole has a cosmological constant.

(3) If the seed black hole is immersed in the magnetic
field.

e one can take the metric ansatz

2 Ay ) 2
s A s XN HFre) e g2, P 2 2 g0
ds~ = — S dt” + p—,zhul O(do — S dt)” + ﬁ\(h + podb”,
9 A 9 5 S 20 9 9 9 ) 9 2 142
ds® = ——(dt —asin”0do)” + 111_) [nrh‘ —(r"+a’ }f'ff.‘ﬁ]' — ir'h" + p°dbh~,
p- p* A
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3. Solutions to the source-free Maxwell equations in
the Einstein-Maxwell system: charge without charge

Charge without charge: magnetic field

It is possible to imagine the Minkowski spacetime with a
uniform magnetic field.

ds? = —dt® + dp?® + p*d¢* + dz*

B — B(}ﬁ :

1 "
Alp,¢,2) = 5Bop¢ =H

A-.r: s —%Bﬂy, A,y = %Bﬂg_’:} Az — (}’ =3F]

It is probe limit! There is no backreaction effect. 18



Pure magnetic and electric geons; M. Melvin, Phys. Lett. 8,
65 (1964). It is self-gravitating!

The Einstein-Maxwell equations

(1) Einstein equations

1 ]. ]- af
R#v = iRg,tw — SWTPH. T.Ur/ — E (F:UG‘FJ? o ZQHVRJJFI )

(2) Source-Free Maxwell equations
V. F" =0

Melvin probably adopted the following metric ansatz and
one-form consistent with cylindrical symmetry and
stationary:

2

ds* = A(p)*(—dt* +dz* +dp?) + Afp)‘f de*, A = A,(p) do,

19



To obtain the following, he would first have solved the
source-free Maxwell equations.

Bap Bop . B,
\ 2 — 7 1 59 o1 ,B* = 9
PR A Py

Ultimately, he would have obtained the solution by
inserting this into the energy-momentum tensor and
solving the Einstein equations.

F: 01 :
vt ! |
i I ¥ i i i i a 0« &80l |
ds? = A2 [—(It‘g +dz? + dpz] + A72p%dg? it i
4] |
5 (8 1 |
. O f _ 1 l 2 2 f — !g-:.vi:"- 1t ! ': !
where A(p) = 14 1 f)“p . Ay = 57 () cot! !
W, 3 t
2 z ottt :
B‘ :l‘ |
(147 oP°) di :
O N t
-2t |I: |
B2 i |
) S
pr(p) =po = —<(p) = T Ll :
\, 1 2 2 4: -3 (I |
{l + 4Bop ) =y = -1 0 1 2 3




Charge without charge: electric field
Charged wormholes with the cosmological constant?

( Anti—de Sitter \

k=1, spherical
k=0, planar
k=-1, hyperbolic

de Sitter

lo

K “— throat /

throats

c 1

de Sitter

fCSDthroats

(€ ¢. horizon

de Sitter

Charged wormholes in (anti-)de Sitter spacetime; Hyeong-Chan Kim, Wonwoo
Lee, e-Print: 2505.09981 [gr-qc], It will be appeared in PLB.



We consider the action

(G =1 for
simplicity)

I = / f_-ﬁ.-f-q./——g[ 1(R—Z;-E—FM,F“”)+£am}+Ib.

16

where L., describes effective anisotropic matter fields.

We obtain (1) the Einstein equation
i 1 _
Gu = Ryw — Eﬂyp,y =811 — Aguw
(2) The source-free Maxwell equations are given by

|
Ou(V/—gF")] =0

VY

VHFp.y _

The additional (fluid) matter does not have an independent
equation of motion.

22



The stress-energy tensor takes the form

A y A
gt = T{if + THEY — - gt |
ST

THY

ST

The additional (fluid) matter does not have an independent
equation of motion.

Pram — Wi€am s Ptam — W2Eam -

TH = diag(—cam. W1€am, W2Cam, W2am)

anisotropic matter : Pram 7 Ptam

23



The static spherically symmetric wormhole geometry without
the cosmological constant is given by

dr? + r*(d6* + sin® Gdv?) .

ds? = — f(r)dt* +
| g(r)

Il‘._f'lflrl f{',] (l . %) ”.“.1

where ®(r) and b(r) denote the redshift function and the
wormhole shape function.

24



We consider static charged wormhole as the form

metric form for

the charge 5 5
without charge | d5$ = —f(r)dt= +

Ir? +r2d%y
g(-r)” + 1 Lo

fir) = (}; + ?—; — %r?) and ¢g(r) = (;ﬂ + ?_; _ %-;*2 _ @

)

/In S.-W. Kim and H. Lee, PRD 63, 064014 (2001) [arXiv:gr-qc/0102077],
H.-C. Kim, S.-W. Kim, B.-H. Lee and WL [arXiv: 2405.10013 [gr-qc]].

)2 )2 b(r —1
ds* = — (l + %) dt* + (l + QQ — < )) dr? 4 2 (d#* + sin? 8di?) |
r ’

.?1

\_

~

J
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For the static electrically charged geometry,

P = /485 satisfy the source-free Maxwell equations.

We express the electric field with upper indices as F = E".

This field should be defined in an orthonormal frame, we adopt
covariant tetrad shown as

= (/f(r),0,0,0), €- = (0, ;(,-y“‘”)'

6 — (0.0.7.0). ¥ = (0,0,0, rsin6)
1 ,

The electric field can be obtained through Fab _ f”f 31?;;:!

The electric field is Er=%.
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We now consider Einstein equations. The nonvanishing
components of the Einstein tensor are given by

GE: — 8 = Sﬁ(—fc — EA — Eam)
b (r
— Sﬁ(_fc) — A — .fQ) ?

Gr=8mp, = 8m(—c. — ep + W1€am)
. 3(Q% — kr? + Ar*)b(r
= 8m(—¢c.) — A+ J(W)g 5 5 )b(r) :
3r3(Q% + kr?) — ArT
G‘g: 8mp; = 8m(e. — A + Wakam)
3A(r)b(r) + B(r)b' (r)
213[3(Q2% + kr2) — Ar4]2 7

= 8m(c.) — A+

where the prime denotes the derivative with respect to

where A(r) = kr2(Ard — g(;)gj + 3rt — 60Q* + 10Q%*Ar,

B(r) = r3(=3k + 20r2)[3(Q2 + kr?) — Ard], £, = 2

{mrrd:
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We obtain the solutions

/ b ].f’U.,‘l
b,
b(,r) — bo (}“.2 i Q2 — 3!.4) |

pr= 2
K Y

kr?— Q% —Art bor (w141) /w1
fam T T gyl _(krg—ng—%r‘L)
oalr) = 1+ 2@ = Fun 32+ k) + 1)
| kr2 — Q2% — Ar4 6(Q2 + kr2) — 2Ar4
Q)? A
€= + + €
o4 8¢ M
QQ A
Pr — _8""1'4 B S T Wi1€am
2 A N
Wl
S 2%am

bo = (‘Z‘T"'g + QQJ/TO - %'-"

3

o
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Conditions to be a wormhole geometry

Now let us describe the conditions for the above solution to
Einstein’s equations to be a wormhole geometry.

Let us check out the flare-out condition and the energy
condition.

X To construct and maintain the structure of the traversable
wormhole, there is the geometric flare-out condition that
must be satisfied at the throat and the neighborhood of
that, which is related to the energy condition of the matter
supporting the wormhole structure.

29



We consider the flare-out condition of the wormhole
through the embedding geometry at t = const. and 6 = /2
(sinh 6=1) :

.. Q> A, br)\" .. 12\
dﬁiq - (1 + ;’—2 — g},.,z - —)ET )> dr? +r?do? = [l + (E[—})

The condition is given by
d?r rlr(b(r) —rb'(r)) — QQQ _ %-r'ﬂ "
dz2 2krb(r) — k(Q2? — %.,.4 + kr2) +12)2 >0,
At the throat
N(ro) = (krg — Q% = Arg) (L + 1/wy) >0

: 2
('[!"2 + .’"‘('{(;')2 ,

One could choose w1 > 0 or w1 < —1.
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Radial geodesics

We now consider radial geodesics by both the light and
massive particle. One can take m # 0 for timelike geodesics
and m = 0 for null geodesics.

The radial geodesics are given by

1 1 . . :
0 0
Q) vn -1 vm
dr\ 2 ) (EHF ?—) . L2 . n- Vm -1
— | +g0r)|———+ —| = -2 -2
d\ I fr) 72
'30 1 2 3 4 "30 1 2 3 4
eQ 2 7 F
dr 2 {}(7') [ (E + ?—) Lg-l (a) Vogn in de Sitter (b) Vigm in de Sitter
| R | A ; A
Vn -1 Vm -1
-2 -2
'30 2 4 6 8 '30 2 4 6 8

r T
(¢) Vegn in anti-de Sitter (d) Veoggm In anti-de Sitter



Geometric realization of the concept of ‘charge without
charge'

Embedded shapes of the wormhole.

This figure illustrates a conceptual embedded diagram of a
wormhole featuring electric field lines. In this diagram, the
red electric field lines converge toward the wormhole from
one universe, traverse through it, and exit into another
universe. At the throat of the wormhole, the Maxwell tensor,
Ftr, goes to zero, which ensures continuity across this
region. If one considers a Gaussian surface that surrounds
the asymptotic regions of both universes, there is an equal
flux of electric field lines entering and exiting, indicating
that no net charge exists within the Gaussian surface.
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Conceptual diagram of the wormhole in de Sitter and anti-
de Sitter spacetimes
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3. Summary and discussions

« We looked at Misner and Wheeler's ideas about the
solution to the source-free Maxwell equations in the
Einstein-Maxwell system.

« We examined well-known solutions by dividing them into
cases with charge and the charge without charge.

« As one example of such a solution, we presented a
wormhole solution with a cosmological constant.

Have fun with wormhole physics!

Thank you for your attention!
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