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Quiz : In electrodynamics, the electric field is denoted by E for obvious reason.

But, the magnetic field is denoted by B or H instead of M. Why?



Physics: the History of Unification

– Originally (1861), Maxwell wrote his equations with neighboring nine alphabets,

B, C, D , E , F , G , H, I, J

lacking vector notation.

– It was Heaviside (1864), or SO(3), who reformulated them into modern four equations,

∇ · E = ρ , ∇× E = −
∂B
∂t

, ∇ · B = 0 , ∇× B = J +
∂E
∂t

– Minkowski (1908), or SO(1, 3), then made further simplification,

∂λFλµ = Jµ , ϵκλµν∂λFµν = 0

• Nonetheless, these simplifications are all rewriting of the same 8 equations in component.
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Physics: the History of Unification

– Similar simplification has been made for the gravitational sector in string theory.

The vanishings of the three β-functions on string worldsheet,

Rµν + 2▽µ(∂νϕ)− 1
4 HµρσHνρσ = 0

1
2 e2ϕ▽ρ

(
e−2ϕHρµν

)
= 0

R + 42ϕ− 4∂µϕ∂µϕ− 1
12 HλµνHλµν = 0

have been unified, thanks to O(D,D), into a single formula, w/ S. Rey, W. Rim, Y. Sakatani 2015

GAB = 0 .

which is the vacuum case of more general, Einstein Double Field Equation (EDFE),

GAB = TAB

where A,B are O(D,D) vector indices. w/ S. Angus and K. Cho 2018

In contrast to electrodynamics, this simplification turns out to be more than just rewriting.



Question : What is the gravitational theory that string theory predicts?

i) Conventional Answer

ii) Better Answer

iii) Doubled Answer



What is the gravitational theory that string theory predicts?

– The conventional answer is General Relativity (GR):

Riemannian metric gµν appears as a massless mode in the quantization of a closed string.

Different modes of a string correspond to different particles (fields).

Needless to say, ever since the formulation of GR by Einstein,
Riemannian geometry has been the mathematical paradigm

for theoretical physics where gµν is privileged to be the only

fundamental variable that defines the concept of ‘spacetime’.



What is the gravitational theory that string theory predicts?

However, gµν is only one segment of the closed string massless sector that should further
includes two additional fields, a skew-symmetric B-field and a scalar dilaton ϕ:

{gµν , Bµν , ϕ} ≡ Closed String Massless Sector

where gµν = gνµ, Bµν = −Bνµ.

This is the universal common sector in all string theories.



What is the gravitational theory that string theory predicts?

– The better answer is Supergravity:

SSUGRA =

ˆ
dDx

√
−ge−2ϕ

(
R + 4∂µϕ∂µϕ− 1

12 HλµνHλµν
)

+ other sectors

where Hλµν = ∂λBµν + ∂µBνλ + ∂νBλµ is the field strength of B-field, or H-flux.

This action secretly keeps O(D,D) symmetry which transforms the trio {g,B, ϕ} to one
another, and may suggest to regard the whole sector as gravitational and also geometric.

This suggests a shift beyond the Riemannian paradigm.



Stringy Three Musketeers

Trinity of the Closed String Massless Sector



What is the gravitational theory that string theory predicts?

This idea has come true through the developments,
under the name, Double Field Theory (DFT)

Siegel 1993; Hull-Zwiebach 2009

(c.f. Generalised Geometry à la Hitchin-Gualtieri)

DFT reformulated SUGRA actions in an O(D,D)

manifest way and further evolved to have its own

Einstein equation, i.e. Einstein Double Field Equation.

– The doubled answer is Double Field Theory.

Stringy Trinity
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– The original form of the DFT action: Summer School Lecture by Zwiebach, München, 2010

S DFT 2010 =

ˆ
e−2d

 HAB
(

1
8∂AHCD∂BHCD + 1

2∂CHA
D∂DHB

C − 4∂Ad∂Bd + 4∂A∂Bd
)

−∂A∂BHAB + 4∂AHAB∂Bd


Holm-Hull-Zwiebach 2010

With the parametrization,

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√

|g|e−2ϕ

Giveon, Rabinovici, Veneziano ’89, Duff ’90
and letting the half of the doubled coordinates, xA =

(
x̃µ, xν

)
, trivial:

∂A =

(
∂

∂x̃µ
,

∂

∂xν

)
≡ (0 , ∂ν)

it reproduces the universal part in SUGRAs:

S DFT 2010 =⇒
ˆ

dDx
√

−ge−2ϕ
(

R + 4∂µϕ∂
µ
ϕ − 1

12 HλµνHλµν
)

– Geometric Formulation?





Contents Hereafter:

I. Geometric Formulation of DFT and EDFE, GAB = TAB

II. Riemannian vs. Non-Riemannian Geometries in DFT

III. Phenomenological Implication: Test of DFT

– Solar System Test (PPN)

– Cosmological Test (alternative to de Sitter)

Yet, due to limited time, I will skip technical details. See arXiv: 2505.10163 for review.



I. Geometric Formulation of DFT:

GAB = TAB

– Its Autonomous Structure –



DFT = O(D,D) completion of GR

– GR is characterised by

Lξ , gµν , ∇λgµν = 0 ⇒ γλµν = 1
2 gλρ(∂µgρν + ∂νgµρ − ∂ρgµν) , Gµν = κTµν

– Dictated by O(D,D) Symmetry Principle, DFT has its own version of each item above.



O(D,D) Symmetry Principle

– The O(D,D) symmetry is characterized by an invariant metric:

JAB =


0 1

1 0



which, with its inverse, raises and lowers the O(D,D) indices, A,B,··· ,M,N,···:

∂A = J AB∂B , JABJ BC = δA
C

– The O(D,D) metric JAB splits the doubled coordinates of DFT into two parts:

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) , ∂A = J AB∂B = (∂µ, ∂̃ν) .



Section Condition & Generalised Lie Derivative

– In order to halve the doubled dimensionality, it is necessary to impose section condition:

∂A∂
A = ∂µ∂̃

µ + ∂̃µ∂µ = 0 .

Namely, all the functions in DFT {Φ,Ψ,Υ, ··} must satisfy

∂A∂
AΦ = 0 & ∂A∂

A (ΦΨ) = 0 =⇒ ∂AΦ∂
AΨ = 0 ,

which can be solved by setting ∂̃µ = 0 up to O(D,D) rotations ⇒ choice of section.

– DFT-diffeomorphisms are then given by generalised Lie derivative: Siegel 1993

L̂ξTM1···Mn = ξN∂NTM1···Mn︸ ︷︷ ︸
transport

+ ωT ∂Nξ
NTM1···Mn︸ ︷︷ ︸

weight

+
n∑

i=1

(∂Mi ξN − ∂NξMi )︸ ︷︷ ︸
so(D,D) rotation

TM1···Mi−1
N

Mi+1···Mn ,

whose commutators are only closed under the section condition.

With ξM = (λµ, ζν), it unifies B-field gauge symmetry δB = dλ and ordinary Lie derivative Lζ .



Doubled-yet-Gauged Coordinates: Geometric Meaning of Section Condition

– The section condition is mathematically equivalent to a certain translational invariance:

Φ(x) = Φ(x +∆) , ∆M = Ψ∂MΥ ,

where ∆M is said to be ‘derivative-index-valued’.



Doubled-yet-Gauged Coordinates: Geometric Meaning of Section Condition

– The section condition is mathematically equivalent to a certain translational invariance:

Φ(x) = Φ(x +∆) , ∆M = Ψ∂MΥ ,

where ∆M is said to be ‘derivative-index-valued’.

– Physics should be invariant under such a shift of the doubled coordinates, suggesting

The doubled coordinates are gauged by derivative-index-valued shifts, satisfying ∆M∂M = 0,

xM ∼ xM +∆M(x) : Coordinate Gauge Symmetry

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point.

JHP 2013

Proper length can be defined by gauged differential one-forms: DxM = dxM − aM where aM∂M = 0.



Fundamental Fields
{
HMN , d

}
and Projectors

– DFT has its own dynamical metric HMN (“generalised metric”) satisfying two defining properties,

HMN = HNM , HM
KHN

LJKL = JMN

Combined with JMN =

 0 1

1 0

, it generates a pair of projectors (orthogonal and complete),

PMN = 1
2 (JMN +HMN) , P̄MN = 1

2 (JMN −HMN) ;
PL

M PM
N = PL

N , P̄L
M P̄M

N = P̄L
N

PL
M P̄M

N = 0 , PM
N + P̄M

N = δM
N

– The O(D,D) singlet dilaton d sets the DFT-integral measure e−2d (unit diffeomorphic weight).
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Vielbeins for Twofold Spin Group: Spin(1,D−1)× Spin(D−1,1)

– Taking the ‘square root’ of each projector,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we obtain a pair of DFT-vielbeins for the twofold spin groups:

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 .

Namely, JMN and HMN are simultaneously diagonalisable as diag(η, η̄) and diag(η,−η̄).

Index Representation Metric (raising/lowering indices)

p, q, · · · Spin(1,D−1) vector ηpq = diag(−++ · · ·+)

α, β, · · · Spin(1,D−1) spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1) vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1) spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1



∗ Twofold Local Lorentz Symmetries, Spin(1,D−1)× Spin(D−1, 1), implies

− ∃ Two separate local inertial frames for the left- and right-moving closed-string modes.
Duff 1986

− Diagonal gauging fixing reduces to a single spin group in conventional gravity (SUGRA).

− It predicts that there are two distinct types of spinors, i.e. fermions.

− It implies the unification of type IIA and IIB superstrings.



Christoffel & Spin Connections w/ Imtak Jeon & Kanghoon Lee 2010, 2011

– In GR, the Christoffel symbol is the unique metric-compatible connection, ∇λgµν = 0, which
satisfies either a torsionless condition, or an alternative condition that the metric is the only
ingredient to form the connection.

– Similarly, the DFT-Christoffel connection can be uniquely fixed,

ΓLMN = 2
(
P∂LPP̄

)
[MN]

+2
(
P̄[M

J P̄N]
K−P[M

J PN]
K
)
∂J PKL− 4

D−1

(
P̄L[M P̄N]

K+PL[M PN]
K
)(
∂K d+(P∂J PP̄)[JK ]

)
satisfying, among others, the compatibility:

∇LJMN = 0 , ∇LHMN = 0 , ∇Ld = − 1
2 e2d∇L

(
e−2d) = 0

where ∇L = ∂L + ΓL is defined by

∇LTM1···Mn := ∂LTM1···Mn − ωT ΓK
KLTM1···Mn +

n∑
i=1

ΓLMi
NTM1···Mi−1NMi+1···Mn .

– One can further obtain the twofold spin connections,

ΦMpq = V N
p∇M VNq , Φ̄Mp̄q̄ = V̄ N

p̄∇M V̄Nq̄

from the requirement that the ‘master’ covariant derivative

DM = ∂M + ΓM +ΦM + Φ̄M = ∇M +ΦM + Φ̄M

should be compatible with the DFT-vielbeins,

DM VNp = ∇M VNp +ΦMp
qVNq = 0 , DM V̄Np̄ = ∇M V̄Np̄ + Φ̄Mp̄

q̄V̄Nq̄ = 0 .
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Curvature & (Semi-)covariance w/ Imtak Jeon & Kanghoon Lee 2010, 2011

– Semi-covariant Riemann curvature :

SKLMN = S[KL][MN] = SMNKL := 1
2

(
RKLMN +RMNKL − ΓJ

KLΓJMN
)
, S[KLM]N = 0 ,

where RABCD denotes the ordinary “field strength”,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED .

By construction, like in GR, it varies as total derivative:

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB =⇒ hence good for variational principle

– The ‘semi-covariance’, means

δξ
(
∇LTM1···Mn

)
= L̂ξ

(
∇LTM1···Mn

)
+
∑n

i=1 2(P+P̄)LMi
NEFG∂E∂F ξG TM1···Mi−1NMi+1···Mn

δξSKLMN = L̂ξSKLMN + 2∇[K
[
(P+P̄)L][MN]

EFG∂E∂F ξG
]
+ 2∇[M

[
(P+P̄)N][KL]

EFG∂E∂F ξG
]

δξΓCAB = L̂ξΓCAB + 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DξE ]

where PLMN
EFG = PL

E P[M
[F PN]

G] + 2
PK

K −1
PL[M PN]

[F PG]E and similarly P̄LMN
EFG is set with P̄M

N .

▶ The red-colored anomalies can be easily projected out to give fully covariant quantities, e.g.

PK
LP̄N1

M1 · · · P̄Nn
Mn∇LTM1···Mn
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Fully-Covariant Quantities w/ Imtak Jeon & Kanghoon Lee 2010, 2011

– Tensors:

DpTq̄1q̄2···q̄n , Dp̄Tq1q2···qn ; DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn (divergence)

– Yang–Mills:

Fpq̄ = FABV A
pV̄ B

q̄ where FAB = ∇AWB −∇BWA − i [WA,WB ]

– Spinors, ρα, ψαp̄ :

γpDpρ , Dp̄ρ , γpDpψq̄ , Dp̄ψ
p̄ (Dirac Operators)

– Ramond–Ramond Sector, Cαᾱ :

D±C := γpDpC ± γ(D+1)Dp̄Cγ̄p̄ , (D±)2 = 0 =⇒ F := D+C (RR flux )

– Curvatures:

Spq̄ := SABV A
pV̄ B

q̄ (Ricci ) , S(0) := (PACPBD−P̄AC P̄BD)SABCD ( scalar ⇒ ‘pure’ DFT )

▶ The original DFT action by Hohm-Hull-Zwiebach 2010 matches
ˆ
ΣD

e−2d S(0) .



Universal Box Operator : O(D, D)-Completion of Riemann Curvature w/ Kawon Lee 2025

– Fully-covariant Second-Order Differential Operator:

∆TA1A2···As := PBC∇B∇CTA1A2···As

+
s∑

i=1

2PAi
CPB

D
(
R[CD] − 1

2Γ
EF

CΓEFD − ΓE
CD∇E

)
TA1···Ai−1

B
Ai+1···As

+
∑
i<j

2
(

PAi
DPB

E
RAj CDE + PAj

DPC
E
RAi BDE − 2PAi

DPB
E PAj

F PC
GSDEFG

)
TA1···Ai−1

B
Ai+1···Aj−1

C
Aj+1···As

and similarly, replacing P by P̄, ∆̄ := P̄BC∇B∇CTA1A2···As +
∑

i · · ·+
∑

i<j · · · .

– While their sum vanishes identically, their difference defines a fully-covariant Box Operator:

∆+∆̄ = J AB∂A∂B + · · · = 0 , 2 = ∆−∆̄ = HAB∂A∂B + · · · + Riemann Curvature · · ·

The Riemmann curvature is O(D,D)-completed as a differential operator.

– 2 provides the universal kinetic term for every string mode (mass-shell condition, p2 + m2 = 0):

▶ Stringy gravitational wave equations for the massless sector: 2(PδHP̄)AB = 0 and 2δd = 0.

▶ Integrating out massive modes, one obtains Wilsonian α′-corrections with Riemann curvature.



Universal Box Operator : O(D, D)-Completion of Riemann Curvature w/ Kawon Lee 2025

– Fully-covariant Second-Order Differential Operator:

∆TA1A2···As := PBC∇B∇CTA1A2···As

+
s∑

i=1

2PAi
CPB

D
(
R[CD] − 1

2Γ
EF

CΓEFD − ΓE
CD∇E

)
TA1···Ai−1

B
Ai+1···As

+
∑
i<j

2
(

PAi
DPB

E
RAj CDE + PAj

DPC
E
RAi BDE − 2PAi

DPB
E PAj

F PC
GSDEFG

)
TA1···Ai−1

B
Ai+1···Aj−1

C
Aj+1···As

and similarly, replacing P by P̄, ∆̄ := P̄BC∇B∇CTA1A2···As +
∑

i · · ·+
∑

i<j · · · .

– While their sum vanishes identically, their difference defines a fully-covariant Box Operator:

∆+∆̄ = J AB∂A∂B + · · · = 0 , 2 = ∆−∆̄ = HAB∂A∂B + · · · + Riemann Curvature · · ·

The Riemmann curvature is O(D,D)-completed as a differential operator.

– 2 provides the universal kinetic term for every string mode (mass-shell condition, p2 + m2 = 0):

▶ Stringy gravitational wave equations for the massless sector: 2(PδHP̄)AB = 0 and 2δd = 0.

▶ Integrating out massive modes, one obtains Wilsonian α′-corrections with Riemann curvature.



O(D,D)-Symmetric Minimal Coupling

– The pure DFT action is given by

S DFT =

ˆ
ΣD

e−2d S(0)

and can further minimally couple to ‘matter’
governed by O(D,D) Symmetry Principle

through covariant derivatives and {HAB , d}.

Consequently, the coupling of {gµν ,Bµν , ϕ}
to each matter is completely fixed.



O(D,D)-Symmetric Actions for Particle and String

Analogous to GR, DFT couples minimally to ‘matter’, while preserving O(D,D) symmetry:

i) To point particle with DτxA = ẋA − aA

ˆ
dτ 1

2 e−1DτxADτxBHAB(x)− 1
2 m2e

=⇒
ˆ

dτ 1
2 e−1ẋµẋνgµν(x)− 1

2 m2e

Hence, minimal coupling to string frame metric only.

ii) To string with DαxA = ∂αxA − aA
α

1
4πα′

ˆ
d2σ − 1

2

√
−hhαβDαxADβxBHAB(x)−ϵαβDαxAaβA

=⇒ 1
2πα′

ˆ
d2σ

 − 1
2

√
−hhαβ∂αxµ∂βxνgµν(x)

+ 1
2 ϵ
αβ∂αxµ∂βxνBµν(x)


which extends to κ-symmetric superstring. JHP 2016

Equivalence Principle holds for Particle

ẍµ + γµ
ρσ ẋρẋσ = 0

not in Einstein but in String Frame.



Supersymmetric DFT and Coupling to the Standard Model

iii) D = 10, Type II SDFT (Full Order 32 SUSY, Pseudo-Action) w/ I. Jeon, K. Lee & Y. Suh 2012

Ltype II = e−2d
[

1
8 S(0) +

1
2 Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1

2 ρ̄γ
pDpρ− i 1

2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄

′p γ̄q̄Dq̄ψ
′
p

]
which unifies IIA and IIB SUGRAs as different solution sectors.

The full order SUSY, i.e. quartic order in fermions, has been recently verified by D. Butter 2022.

iv) D = 4 DFT minimally coupled to the Standard Model w/ K. Choi 2015 PRL

LDFT–SM = e−2d
[

1
16πGN

S(0) +
∑

A Tr(Fpq̄F pq̄)−HMN(DMϕ)
†DNϕ − V (ϕ)

]
+
∑
ψ ψ̄γ

pDpψ +
∑
ψ′ ψ̄′γ̄p̄Dp̄ψ

′ + yd q̄·ϕ d + yu q̄·ϕ̃ u + ye l̄ ′·ϕ e′

Conjecture: quarks and leptons are distinct kinds of spinors, one for Spin(1, 3) and the other for Spin(3, 1).

▶ Every single term in the above Lagrangians is fully-covariant, w.r.t. global O(D,D) rotations,

DFT-diffeomorphisms, and twofold local Lorentz symmetries.



Einstein Equation from Variational Principle w/ S. Angus and K. Cho 2018

– Now we consider a general DFT action coupled to generic matter, say Υ’s,

Action =

ˆ
Σ

e−2d
[

1
2κS(0) + Lmatter

(
Υ,DMΥ

) ]
.

The variational principle leads us to define for the matter part,

Kpq̄ := 1
2

(
VMp

δLmatter
δV̄M

q̄ − V̄Mq̄
δLmatter
δVM

p

)
= −2VMpV̄Nq̄

δLmatter
δHMN

, T(0) := e2d ×
δ
(

e−2d Lmatter

)
δd

– The ‘General Covariance’ of the action,

0 =

ˆ
Σ

e−2d
[

1
κ
ξNDM

{
4V[M

pV̄N]
q̄(Spq̄ − κKpq̄)− 1

2JMN(S(0) − κT(0))
}
+ L̂ξΥ

δLmatter

δΥ

]
then guides us to identify the Einstein curvature, w/ S. Rey, W. Rim, Y. Sakatani 2015

GMN := 4V[M
pV̄N]

q̄Spq̄ − 1
2JMNS(0) , ∇M GMN = 0 (off-shell)

and the Energy-Momentum tensor,

TMN := 4V[M
pV̄N]

q̄Kpq̄ − 1
2JMNT(0) , ∇M T MN = 0 (on-shell)

▶ Equating them, we finally obtain the Einstein equation of DFT, or EDFEs: GMN = κTMN



II. Non-Riemannian Geometry



Question: Is DFT a mere O(D,D)-symmetric reformulation of SUGRA?

– The answer would be (and had been in literature) yes, if we assume

HMN =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√

|g|e−2ϕ

Giveon, Rabinovici, Veneziano ’89, Duff ’90

Upon this parametrisation, the pure DFT action produces SUGRA (bosonic part):

ˆ
dDx e−2d S(0) =

ˆ
dDx

√
−ge−2ϕ(R + 4∂µϕ∂µϕ− 1

12 HλµνHλµν
)

and the EDFE, GMN = TMN , reduces to

Rµν + 2▽µ(∂νϕ) − 1
4 HµρσHν

ρσ = K(µν) ⇐= δgµν

1
2 e2ϕ▽ρ

(
e−2ϕHρµν

)
= K[µν] ⇐= δBµν

R + 42ϕ − 4∂µϕ∂
µϕ − 1

12 HλµνHλµν = T(0) ⇐= δd
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Question: Is DFT a mere O(D,D)-symmetric reformulation of SUGRA?

– Yet, DFT works perfectly fine, with any DFT-metric that satisfies the defining properties:

HMN = HNM , HM
KHN

LJKL = JMN .

And the previous parametrisation is not the most general solution to them.

Hence the answer to the question is No.

– In fact, the most or perfectly symmetric vacua of DFT are given by

HMN = ±JMN =

 0 ±1

±1 0



which do not admit any Riemannian interpretation, c.f. HMN =

 g−1 −g−1B

Bg−1 g − Bg−1B


and thus, non-Riemannian, i.e. ∄ gµν .
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Riemannian Spacetime Emergence

– Analysing DFT Killing equation, w/ C. Blair and G. Oling 2020

L̂ξHMN = ξL∂LHMN + 2∂[MξL]HL
N + 2∂[NξL]HM

L = 8P̄(M
[K PN)

L]∇K ξL = 0

one can address the notion of isometries in DFT.

– Especially when HMN = ±JMN , any ξL sets L̂ξHMN = 0, implying ∞-dimensional isometries.

Further, it can be shown that the non-Riemannian geometry of HMN = ±JMN prohibits any
infinitesimal variation:

H2 = 1 =⇒ δHH+HδH = 0

“Riemannian spacetime emerges after SSB of O(D,D), identifying {g,B} as

Nambu–Goldstone boson moduli." Berman, Blair and Otsuki 2019



Non-Riemannian Geometry in a Nutshell

▶ DFT provides a universal framework for (Riemannian) SUGRA as well as non-Riemannian
Gravities: e.g. non-relativistic Newton–Cartan, ultra-relativistic Carroll, and fracton physics.

▶ Strings and particles become chiral and immobile in non-Riemannian (sub)space.

▶ DFT enlarges the concept of spacetime geometries, redefines the notion of spacetime
singularity, and provides novel string vacua.

• First example w/ Kanghoon Lee 2013

• Non-Relativistic String w/ Sung Moon Ko, Charles Melby-Thompson, Rene Meyer 2015

• Classification w/ Kevin Morand 2017

• Moduli-free Kaluza–Klein reduction w/ Kyoungho Cho and Kevin Morand 2018

• -Dynamics through EDFE w/ Kyoungho Cho 2019

• Quantum Consistency on Worldsheet w/ Shigeki Sugimoto 2020 PRL

• ∞-dimensional Isometries w/ Chris Blair and Gerben Oling 2020

• Some Riemannian Singularities = Non-Riemannian Regularity

w/ Kevin Morand and Miok Park 2021 PRL

• Fracton Physics w/ Stephen Angus and Minkyoo Kim 2021



Classification of DFT geometries w/ Kevin Morand 2017

The most general parametrisations of the DFT-metric, HMN = HNM , HM
KHN

LJKL = JMN ,

can be classified by two non-negative integers, (n, n̄), 0 ≤ n+n̄ ≤ D :

HMN =

 Hµν −HµσBσλ + Yµ
i X i

λ − Ȳµ
ı̄ X̄ ı̄

λ

BκρHρν + X i
κYν

i − X̄ ı̄
κȲν

ı̄ Kκλ − BκρHρσBσλ + 2X i
(κBλ)ρYρ

i − 2X̄ ı̄
(κBλ)ρȲρ

ı̄



=

 1 0

B 1


 H Yi (X i )T − Ȳı̄(X̄ ı̄)T

X i (Yi )
T − X̄ ı̄(Ȳı̄)

T K


 1 −B

0 1


where

Hµν = Hνµ , Kµν = Kνµ , Bµν = −Bνµ

HµνX i
ν = 0 = Hµν X̄ ı̄

ν , KµνYν
j = 0 = Kµν Ȳν

ȷ̄ : i, j = 1, 2, · · · , n ; ı̄, ȷ̄ = 1, 2, · · · , n̄

HµρKρν + Yµ
i X i

ν + Ȳµ
ı̄ X̄ ı̄

ν = δµν : completeness relation

▶ It follows that Yµi X j
µ= δi

j , Ȳµı̄ X̄ ȷ̄µ= δı̄ ȷ̄ , Yµi X̄ ȷ̄µ = 0 = Ȳµı̄ X j
µ, and HM

M = 2(n−n̄).

▶ Obviously, only (0, 0) is Riemannian but all others are non-Riemannian.

▶ Underlying coset is O(D,D)
O(t+n,s+n)×O(s+n̄,t+n̄) with dimensions D2 − (n − n̄)2.



III. Phenomenological Implication

The Fate of all Physical Theories is to be Tested;
DFT is No Exception

– Solar System Test: Equation of State Matters

– Cosmological Test: Alternative to de Sitter

2202.07413 w/ Kang-Sin Choi PRL

2308.07149 w/ Hocheol Lee, Liliana Velasco-Sevilla, and Lu Yin



Solar System Test: Parametrised Post Newtonian (PPN) formalism

– Two dimensionless PPN parameters βPPN , γPPN à la Eddington-Robertson-Schiff are defined

in an asymptotically flat isotropic coordinate system: with r =
√

x i x jδij ,

ds2 = −
(

1 −
2MGN

r
+

2βPPN(MGN)
2

r2
+ · · ·

)
dt2 +

(
1 +

2γPPNMGN

r
+ · · ·

)
dx i dx jδij

• Observational values Will 2014

– Shapiro Time Delay:

γPPN − 1 = (2.1 ± 2.3)× 10−5

– Perihelion shifts of Mercury:

βPPN − 1 = (−4.1 ± 7.8)× 10−5

– Earth Gravity:

4βPPN − γPPN − 3 = (4.44 ± 4.5)× 10−4

– Galactic size scale: γPPN = 0.98 ± 0.07



GR predicts βPPN = γPPN = 1

– In GR, the geometry of a spherical object, or “star”, is in general

ds2 = −e−2∆(r)
(

1 −
2GNM(r)

r

)
dt2 +

dr2

1 − 2GN M(r)
r

+ r2dΩ2 ,

where r denotes areal radius and

M(r) := −
ˆ r

0
dr ′ 4πr ′2 Tt

t (r ′) , ∆(r) := 4πGN

ˆ ∞

r
dr ′
{

Tr
r (r ′)− Tt

t (r ′)
}

r ′

1 − 2GN M(r ′)
r ′

.

– Outside the star r > r⋆ (star radius), Tµν = 0 hence ∆(r) = 0. The outer geometry is given
by Schwarzschild metric having the only one parameter M = M(r⋆) : Birkhoff’s theorem

– Mapped to the isotropic coordinate system, one gets rather exactly βPPN = γPPN = 1.

This has been viewed as the “success” of GR.



Stringy Spherical Vacuum Burgess-Myers-Quevedo 1994

– The spherical vacuum solution to GAB = 0 in DFT has three “free” parameters {a, b, h},

e2ϕ = γ+

(
4r−

√
a2+b2

4r+
√

a2+b2

) 2b√
a2+b2

+ γ−

(
4r+

√
a2+b2

4r−
√

a2+b2

) 2b√
a2+b2

,

H(3) = h dt ∧ dφ ∧ d cosϑ , ds2 = gtt (r) dt2 + grr (r)
[
dr2 + r2 (dϑ2 + sin2 ϑdφ2)] ,

where γ± = 1
2

(
1 ±

√
1 − h2/b2

)
, gtt (r) = −e2ϕ(r)

(
4r−

√
a2+b2

4r+
√

a2+b2

) 2a√
a2+b2 and

grr (r) = e2ϕ(r)
(

4r+
√

a2+b2

4r−
√

a2+b2

) 2a√
a2+b2

(
1 − a2+b2

16r2

)2
.

– One can read off the mass and the two PPN parameters,

MGN = 1
2

(
a + b

√
1 − h2/b2

)
, (βPPN−1)(MGN)

2 = h2

4 , (γPPN−1)MGN = −b
√

1− h2

b2 ,

and further take {MGN , βPPN , γPPN} as alternative three parameters, such that

ϕ ≃ (γPPN−1)MGN
2r + (βPPN−1)(MGN )2

r2 , H(3) = ±2
√
βPPN−1 MGN dt ∧ dφ ∧ d cosϑ

Namely, the deviations γPPN−1 and
√
βPPN−1 correspond to the dilaton and H-flux charges.



Stringy Star has βPPN = 1 due to weak energy condition

– In a similar fashion to GR, the vacuum solution in the previous page can be identified as the
outer geometry of a stringy star (non-singular), while it becomes possible to relate the three
parameters to the stress-energy tensor of the star. [Angus-Cho-JHP 2018]

It turns out that, by assuming weak energy condition for positive mass,

−Kt
t > 0 MGN =

1
4π

ˆ
star
d3x e−2d

(
−Kt

t
)
,

one can show the electric H-flux must be trivial, h = 0, which implies

βPPN = 1



PPN parameter γPPN is an equation-of-state parameter:

– On the other hand, γPPN can be identified as a generalized equation-of-state parameter
which should be subject to the experimental bound:

|γPPN − 1| ≃

∣∣∣∣∣∣∣∣
ˆ

SUN
d3x e−2d(Kµµ − T(0)

)
ˆ

SUN
d3x e−2d (−Kt t )

∣∣∣∣∣∣∣∣ ≲ 10−5

Thus, for DFT to pass the solar system test, the matter forming the sun needs to satisfy∣∣∣Kµµ − T(0)

∣∣∣ << ∣∣∣Kt
t
∣∣∣



Failure or NOT? ⇒ the choice of right degrees-of-freedom Weinberg

– If a star were modeled as an ideal gas of particles, we have

γPPN ≃ 3p/ρ = ⟨(v/c)2⟩ .

To be consistent with the observation, the constituting particles should be ultrarelativistic
(v/c ∼ 1) rather than “pressureless dusts”.

– The pressure outside an atom may be negligible, but this is also true for the energy density.

Both ρ and p should be confined inside baryons.

Recent experiment reveals high pressure p ∼ ρ inside proton. Burkert-Elouadrhiri-Girod 2018 Nature

– Instead, chiral effective theory of nuclear physics,

Seff . = −
ˆ

d4x e−2d gµν∂µΦI∂νΦ
JGIJ(Φ)

sets Kµµ = T(0) and thus rather precisely γPPN = 1.

– Applied to QCD, the condition boils down to the gluon and quark condensates:

γPPN − 1 ≃

ˆ
star
d3x

[
e−2d Tr(B2 − E2)− mψ̄ψ

]
ˆ

star
d3x

[
e−2d Tr(E2) + iψ̄γt Dtψ

]
which may vanish, as the electric and magnetic fields may cancel each other, while the
quarks get negligible. Barate et al. 1998; Del Debbio-Zwicky, Hyun Kyu Lee, Mannque Rho 2022.



Solar System Test: Gravitational Probe into the Interior of Hadrons

– To summarize, DFT sets βPPN = 1 and lets γPPN be the equation-of-state parameters.

The observations γPPN ≃ 1 may hint at the equation of state inside baryons.



Cosmological Test: Exact Vacuum Solution alternative to de Sitter

– In GR, de Sitter is the simplest cosmological solution: ΩΛ = 0.73 for ΛCDM.

Yet, the Hubble tension is getting worse by James Webb telescope: 67 vs. 73 km/s/Mpc.

Besides, there is swampland no-go argument for the existence of de Sitter. Vafa et al.

– What would be the cosmological vacuum solution to EDFE?

The answer is traceable to the work (1994) by Copeland, Lahiri, and Wands.

Here we elaborate their solution further to feature three free parameters,{
H0, h, l ≡ 1/

√
−k
}

as for an open Universe which turns out to fit observational data.

Dilaton ϕ which does not run away because k < 0,

e2ϕ(η) =
1−

√
1− 1

12 (hl sinh ζ)2

2

[
tanh

(
η
l +

ζ
2

)
tanh ζ

2

]√3

+
1+

√
1− 1

12 (hl sinh ζ)2

2

[
tanh

(
η
l +

ζ
2

)
tanh ζ

2

]−√
3

Magnetic H-flux and FLRW metric (homogeneous & isotropic),

H(3) =
h r2 sinϑ√

1+r2/l2
dr ∧ dϑ ∧ dφ , ds2 = a2(η)

[
−dη2+ dr2

1+r2/l2
+r2(dϑ2+sin2ϑdφ2)]

with the scale factor and the Hubble constant,

a2(η) = e2ϕ(η) sinh (2η/l + ζ)

sinh ζ
, H0 =

1
2l sinh ζ

[
2 cosh ζ −

√
12 − (hl sinh ζ)2

]
.



Bayesian Inference of Observational Data

– Type Ia Supernovae by Pantheon+: Distance Modulus µ(z) & Luminosity Distance dL(z),

µ(z) = 5 Log10

[
dL(z)
10 pc

]
, dL(z) =

1 + z
√
−k

sinh

[√
−k
ˆ z

0

dz′

H(z′)

]

⇒ 1583 data points over 0.01 ≤ z ≤ 2.26 Riess et al. 2021

– Quasar Absorption Spectrum: Temporal Variation of the Fine Structure Constant,

e−2ϕ(t)

α
FµνFµν =

1
αeff .(t)

FµνFµν

⇒ 199 data points over 0.22 ≤ z ≤ 7.06

King et al. 2012; Wilczynska et al. 2015 & 2020; Martins et al. 2017

– We perform analyses of Bayesian Inference (BI) against these observational data.

We use Markov Chain Monte Carlo (MCMC) ensemble sampler called ‘emcee’.

With 100 walkers, we run the samplers on a supercomputer (KiSTi ) for 106 steps.



Two Parameter Fitting by the Exact Vacuum (trivial H-flux)
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H0 = 71.29 ± 0.12
k = 1 + (6 ± 2)×10 7

– BI: very well converged, Ωk = 1/(lH0)
2

– Distance Modulus µ : Complete agreement

with the type Ia supernova data.

– Suppressed time-evolution of e2ϕ or

the fine-structure constant: Consistency

with the quasar data.

∗ Admirable agreement, without DE or DM.



Extrapolations to Future and Past

– The exact vacuum solution predicts that, at future infinity the dilaton converges to constant,

and the Universe expands forever as a(η) ∝ eη/l such that

lim
η→∞

Ωk = 1

which agrees with our BI fitting. Thus, there is No Coincidence Problem in our scenario.

– Extrapolated to the past, the Universe bounces about 13.72 gigayears ago which is

intriguingly close to the “age” of the flat Universe estimated in ΛCDM.



Conclusion

⋆ GR, including Einstein equation, has been successfully doubled:

GAB = TAB where A,B are O(D,D) indices.

⋆ While the theory yields sharp O(D,D)-symmetric predictions, it has not been

excluded by observations and awaits further verification.
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Thank you


