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Motivation

AdS/CFT correspondence

Classical SUGRA <) | Super-CFET at the AdS boundary
on AdS space-time 1tol (in_a strong coupling regime)

Due to the conformal symmetry, the IR theory is trivial.

How about a non-conformal and non-supersymmetric OF T like a condensed matter theory?

non-trivial RG flow

- known asymptotic AdS geometries
(dual QFT?)

- IR physics

- QCD and CMT - dual geometries?



Can we find the dual geometry of a given OFT data?

If we know the RG flow of QFT, then we can reconstruct its dual gravity.

To investigate IR (macroscopic) physics from the fundamental (microscopic) QFT,
we need to figure out a non-perturbative RG flow.
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RG flow descriptions

(1) Momentum-space RG (integrate out higher frequency modes)

(1) 1PI (one particle irreducible) RG (perturbative, QFT for high energy physics)

(i1) Wilsonian Exact RG equation with a hard cutoff (non-perturbative) ‘ holographic renormalization

(11) Polchinski exact RG equation with a soft cutoff (non-perturbative)



RG flow descriptions

(1) Momentum-space RG (integrate out higher frequency modes)

(1) 1PI (one particle irreducible) RG (perturbative, QFT for high energy physics)

(11) Wilsonian Exact RG equation with a hard cutoff (non-perturbative) ‘ holographic renormalization

(i1) Polchinski exact RG equation with a soft cutoff (non-perturbative)

(2) Real-space RG (Migdal-Kadanoff, CMT)
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Ryu-Takayanagi conjecture

One of the most remarkable successes in the AdS/CFT correspondence is the microscopic derivation of the Bekenstein-Hawking

entropy for a BPS black hole
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This idea relates the gravitational entropy to the degeneracy of the dual quantum field theory with its microscopic description.

On the other hand, there exists a different kind of entropy called the entanglement entropy in quantum mechanical systems which

measures the entanglement between quantum states.

Ryu and Takayanagi proposed the formula following the black hole entropy

Area of ~
4G
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The goal of this work is to figure out the entanglement entropy in the strong coupling regime following the AdS/CFT

correspondence.



Review of the holographic entanglement entropy

The entanglement entropy measures

how closely and quantumly a given wave function is entangled.

Definition of EE (entanglement entropy)

- Divide a quantum system into two parts, A and B.

B @4— OA 3

H =H ,QH, .

- Reduced density matrix of the subsystem A: pPB =— Tr APtot

- The entanglement entropy (EE)
Sp = —Trppplogpp

which is proportional to the area of the entangling surface ( 9 A

)



S Biscribes the quantum entanglement detected by an observer who is only accessible to the subsystem B and can

not receive any signal from A.
This is similar to the Bekenstein-Hawking entropy of the black hole.

Since an observer sitting in the outside of the horizon, B, can not receive any information from A, we can regard A as a black

hole and the boundary of A as the black hole horizon.

1. The area law of the entanglement entropy 1s also similar to that of the

black hole entropy

2. The entanglement entropy is utilized to figure out the black hole entropy




Due to the similarity to the black hole,

Ryu and Takayanagi [2006] proposed the holographic entanglement entropy (hEE) following the AdS/CFT correspondence

the EE of a d-dimensional CFT can be evaluated by the area of the minimal surface in the d+1-dim dual AdS gravity
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2-dim. CFT result

It 1s known that the entanglement entropy of the 2-dim CFT is given by

c L . m«l c [
Sg = glog (Esmf) ~ glogg

where | and L are the length of the subsystem A and the total system and € is a UV cutoff (lattice spacing) and c is
the central charge of the CFT.

Away from criticality (fixed point), the entanglement entropy is replaced by

3

€

Sg = gAlog

where & is the correlation length.

This is due to the infinite conformal symmetry and modular invariance of a 2-dim. CFT defined on the torus.



Aspects of the holographic entanglement entropy

General properties of the entanglement entropy

1) Area law of the entanglement entropy

The leading term of the entanglement entropy is provided by the short distance interaction between two
subsystems near the boundary. In the continuum limit, this term causes a UV divergence and its coefficient is

proportional to the area of the entangling surface 94 (UV cutoff sensitive, regularization scheme dependent).

A A
Sp ~ fr*eg,_(? ) + subleading finite terms
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2) Subleading finite terms

There exists the terms not relying on a UV cutoff, which can provide an important physical information

associated with the long range correlations.

In general, the entanglement entropy crucially depends on the shape and size of the entangling surface.

(i) for d=odd

- No logarithmic term

- There exists a constant term, F, which is identified with a free energy of the 3-dimesional dual CFT for d=3.

- For d=3,

F 1is the exact same as the free energy of 3-dim. CFT which has been checked by the comparison with the localization
result.



(ii) for d=even

A=Q ! éd_2+ "1 d + O(1)
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with

- There exists a universal logarithmic term. Its coefficient is universal in that it is independent of the regularization

scheme.

- The coefficient of the logarithmic term is independent of the entangling surface area, which is related to the a-

type anomaly.

- Weyl anomaly of 4-dim. CFT,
C
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As a consequence, the logarithmic term is related to the anomaly and crucially depends on the dimension

and shape of the entangling surface.

c-theorem by Zamoldchikov

When a 2-dim. CFT is deformed by a relevant operator, it flows to a new IR fixed point.

In this case, the central charge, which describes degrees of freedom of a system, monotonically decreases along the

RG flow.

In higher dimensional theory, is there a theorem similar to the C-theorem?

- For d=4, there exists two central charges, a and c. It has been believed that the a-type anomaly satisfies the

c-theorem (a-theorem).

- For d=3, it has been conjectured that the free energy monotonically decreases along the RG flow (F-theorem).




F-theorem in 3-dim. CFT  [Jafferis-Klebanov-Pufu-Safdi 2011, Myers-Sinha 2010]

RG flow under a relevant deformation

4

UV fixed point ;

Cuv
RG flow

CIR

> 1/Energy
IR fixed point

Fuv(S®) > Fr(S®), F=—logZ(S’)

HEE with a spherical entangling surface in a 3-dim. CFT

Sp = aé — F(S%)



For the entanglement entropy

we can also derive the similar structure, where the quantum entanglement transfers into a thermal quantity with a

small quantum corrections.

For the three-dimensional AdS (BTZ) black hole

RZ R2 R2 22
2 _ 2 2 2 . —1_=
ds” = —z—2f(z)dt + 27(2) dz” + ?dm , with f(z)=1 2
thermodynamic quantities are given by
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H 2T zh’
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167G z;

and satisfy the first law of thermodynamics  dFE = Ty dS,,



In the holographic context

the entanglement entropy can be evaluated as the area of the minimal surface extended in the dual geometry.

Then, the subsystem size and the entanglement entropy can be rewritten in terms

of the turning point

[
0o = zhtanh(—),
22,

1 220 1 2
Sp = —Slog=— — —log(1—=2).
B 2G % ¢ 4G og( z,%)

This is an exact and analytic result.

When zp, — oo,
20 — l/2

1 [ .
Sy = Ye log . (ground state entanglement entropy, UV divergence)



RG flow of the entanglement entropy

Thermodynamics-like law of the entanglement entropy in the UV limit

Tp Se=F with Tp=2

wl
- This relation is defined in the UV region with neglecting higher order corrections.
- It reproduces the linearized Einstein equation of the dual geometry.
- It is not valid in the IR region.

In order to go beyond the linearized lever and to describe the RG flow correctly, we need generalized concepts
involving all higher order corrections.

We define a generalized thermodynamics-like law and generalized entanglement temperature involving all higher
order correction and satisfying in the entire region

T Sp = FE



Define a renormalized entanglement entropy (subtracting the ground state EE)
Sp =Sk — SY.

Then, the exact renormalized EE and a generalized entanglement temperature
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Ty Ty (1 12027 + ) with the previously defined entanglement temperature 7z = —.
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Ignoring 2 order corrections, they are reduced to the known results.

Note that the generalized entanglement temperature was defined to satisfy the thermodynamics-like law exactly

with involving all higher order correction. Therefore, we can apply the thermodynamics-like law to the IR

entanglement entropy.




In the IR region ( 20 = zn ),

Reexpressing it in terms of the black hole entropy involved in the volunie , we reach to the similar result obtained

from the black hole and CFT calculations

= 1
SE =Sy, — %logsth +O(1)

Since S;, — oo 1n the IR limit, the IR entanglement entropy reduces to the thermal entropy with small quantum

corrections. Also, we can see that the generalized entanglement temperature reduces to the real temperature.
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Regardless of the dimensionality and microscopic detail of the dual field theory, the IR entanglement entropy reduces to

SE — Sth + Scorrection

S, - Universal

Scorrection . depending on the dual theory

For a two-dimensional scale invariant theory

Scorrection ~ - log Sth

Intriguingly, the universality of the IR entanglement entropy proposed from the holography
SE ~ S

occurs in the real space renormalization group flow of the lattice theory (Ising model). This follows the volume law

Sth ~ |



Reconstruction of the dual gravity from the entanglement entropy

When the entanglement entropy of a 2-dim system consisting

of two kinds of matter, radiation and massive particles, 4

(1) can we reconstruct the dual gravity of this system?

(2) Can we read other physical properties of this system?

Qv log ¢

1 2 3 4 5

(a) Entanglement entropy (input)

1. Logarithmic behavior in the UV limit ( Sg ~ log ¢ ): asymptotic AdS space
2. Volume law in the IR limit ( Sg ~ ¢ ): thermal system

3. A general form of the dual gravity (black hole geometry)
2 _ R’

1
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b )

(—f(z)dt2 + dz* + da:Q)



Using the above metric ansatz, the corresponding entanglement entropy is determined by

R™'Way [ 2P+ [
SE — dx
4G —£/2 2/ f

In this case, the subsystem size and entanglement entropy are characterized by a turning point 2;
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Solving these integral equations, we find z; and f(z;) , which determines the black hole geometry.



Parametrizing the turning point as . 2 — €
2 =€+10% with 0z = hN

Atgiven 2;, we find f(2;) satisfying the input entanglement entropy Sz (/)
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As a result, we obtain the blackening factor f(Z;) at Z;

R
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(b) Blackening factor (output)



After extrapolation, we determine the horizon and 1.0

Hawking temperature Ll

2n ~ 0.99986
_J'(z)

47

0.6

Ty = ~ 0.12054 04

0.2 7
To understand other physical properties, we guess the analytic .

00—
form of the blackening factor 0.0 0.2 0.4 0.6 0.8

(b) Blackening factor (output)

f(Z):]'_IOOZ_M227
M : number density of massless radiation

Po : number density of massive particles

Then, the massive particle’s density is determined from the above numerical data

2
Zh



Finally, the following blackening factor 1s reconstructed from the entanglement entropy data

f(z) =1—0.48553 z — 0.51468 2.

From the black hole’s thermodynamics

7T2 RV RV
Int 1 U = —H 7 ~0.01141 —
nternal cnergy th 4 G G
21T + po Ty R R
Pressure: P, — H — ~0.01873 =,
— th 8 G G
. Lo
Equation of state: w = 1 + ~ 1.64107,
27TTH
. 7Ty RV RV
Specific heat: — P ~0.18934 — > 0.
PCC111C Nca Cy 5 G G

Derived value

True value | Error

Ui, 0.01141 0.01119 | 1.97 %
Py, 0.01873 0.01865 | 0.43 %
w 1.64107 1.66667 | 1.54 %
Cy 0.18934 0.18750 | 0.98 %

withR=V =G =1

- True values of M/ and Po are M = qp = 1/2
which are utilized to derive the input data.




Reconstruction of the dual gravity theory

Entanglement Entropy vs. Length (UV Cutoff z = 30. C
7 == IR

Assuming that the following entanglement entropy " . Sg = 5 log ¢
1s given, then what is the dual geometry and gravity 3%) - \/

theory?

CUuv > CIR

- The given entanglement entropy data shows that
a UV CFT deforms and then leads to another IR
CFT.

-~ S(L) (Unrenormalized Area)

S=SCFT+/d2$)\O

S 04 06 0.8 1.0 12
Boundary Length L

[Stage 1] A(2) Reconstruction

Repeating the previous holographic
reconstruction, we obtain the following dual ol
geometry, where we use the following metric
ansatz

— Original Al2) (from solution)
~®= Reconstructed Alz.) from ds/al

g

20+

Warp Factor Al2)

ds? = dy? + 2AW-24Wn)g datdz”.

v v ™ r - * -
0 S 10 15 20 25 X
Radiwl Coordinate 2 {2 *)



When the UV CFT is deformed by one scalar operator, we expect that the dual gravity theory is given by

s s / d*zVG (R 2Ad+1——GMN6 PON V(¢))

whose equations of motion are For d=2
0= 2d(d~ )A? — § + 4hars + 25, 0(0) = 6 V2 [ dy AT
. V(y) =2 — R? (24" (y)? + A" (y)) .
0= 4(d — 1)A +2d(d — 1)A? + ¢ + 4hap + o, - ,(y) (, @, | () )_ |
R with an appropriate initial condition of ¢(v)

0=¢+dig— ~2&
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[Stage 2] V(phi) Reconstruction (Data Cleaning Method) phi(z) Reconstruction Check

— Reconstructed V(phi) (Cleaned) 104 +  Reconstructed phi(z)
. . . === Original V(phi) === Original phi(z)
Using these equations of motion, \

we also find the scalar field ' |
profile and the scalar potential
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Scalar Field ¢



vi$)

The true scalar potential, which we exploited to derive the entanglement entropy, is

rowenual vipni

L [AE 2DAC GHRIDIE 9£5H] &

DU Viphi)l = o + c2+phi“2 + cdrrhi®d
Paraneter | flecanstructed | True Theory | Errar
c0 (Yae) | -| 9889 | -2.000 | 0.56%
c2 (Hass) | -0.7714 | -0.7500 | 2.85%
cd fInt) | 0.3852 | 0.3750 | 2.71%
Final Global Reconstruction of Scalar Potential V(¢)
Reconstructed Data (from S(L))
s s (ERge T = Global Fit: cp=-1.99, c;=-0.77, c4=0.39
N == True Theory (Vevst)
-2.05
-2.10 1
~2.15 4
— V1¢) (Stable) é
+  Flow Path =2:20
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»
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M A A
V(6) = 2Rpyhov + 50 + 50 = 2oy + 36 (o

where M?

1 1 V(o)
7% / PX\/ =g (R — §8M¢8M¢ - )
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m; < 0, A > 0and Ayy = —1/Rfy, with a UV AdS radius Ryy.




Beta-function (left) and c-function (right)
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Conclusion

1. We reconstruct the black hole geometry from the entanglement entropy data of a thermal system.

2. We also find the dual gravity theory of a deformed CFT, which leads to the given entanglement entropy data.

3. In Future work, we try to reconstruct the dual gravity theory of the known CMT, like a transverse field Isim

model.



Thank you!






