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Motivation

AdS/CFT correspondence

Classical SUGRA
on AdS space-time  

Super-CFT at the AdS boundary     
(in a strong coupling regime)1 to 1

Due to the conformal symmetry, the IR theory is trivial.

How about a non-conformal and non-supersymmetric QFT like a condensed matter theory?

UVIR
non-trivial RG flow

- known asymptotic AdS geometries                                                    
(dual QFT?)

- IR physics

- QCD and CMT - dual geometries?



Can we find the dual geometry of a given QFT data?

If we know the RG flow of QFT, then we can reconstruct its dual gravity.

UV IR
non-perturbative RG flow

To investigate IR (macroscopic) physics from the fundamental (microscopic) QFT, 
we need to figure out a non-perturbative RG flow.  



Can we find the dual geometry of a given QFT data?

If we know the RG flow of QFT, then we can reconstruct its dual gravity.

UV IR
non-perturbative RG flow

To investigate IR (macroscopic) physics from the fundamental (microscopic) QFT, 
we need to figure out a non-perturbative RG flow.  

dual gravity



RG flow descriptions
(1) Momentum-space RG (integrate out higher frequency modes) 

(i) 1PI (one particle irreducible) RG (perturbative, QFT for high energy physics) 

(ii) Wilsonian Exact RG equation with a hard cutoff (non-perturbative)               holographic renormalization

(ii) Polchinski exact RG equation with a soft cutoff (non-perturbative) 



RG flow descriptions
(1) Momentum-space RG (integrate out higher frequency modes) 

(i) 1PI (one particle irreducible) RG (perturbative, QFT for high energy physics) 

(ii) Wilsonian Exact RG equation with a hard cutoff (non-perturbative)               holographic renormalization

(ii) Polchinski exact RG equation with a soft cutoff (non-perturbative) 

(2) Real-space RG (Migdal-Kadanoff, CMT)

RG flow of Entanglement entropy

Block spin renormalization



One of the most remarkable successes in the AdS/CFT correspondence is the microscopic derivation of the Bekenstein-Hawking 

entropy for a BPS black hole

This idea relates the gravitational entropy to the degeneracy of the dual quantum field theory with its microscopic description.

On the other hand, there exists a different kind of entropy called the entanglement entropy in quantum mechanical systems which 

measures the entanglement between quantum states. 

Ryu-Takayanagi conjecture

Ryu and Takayanagi proposed the formula following the black hole entropy

The goal of this work is to figure out the entanglement entropy in the strong coupling regime following the AdS/CFT 

correspondence. 



Review of the holographic entanglement entropy 

The entanglement entropy measures 

how closely and quantumly a given wave function is entangled.

Definition of EE (entanglement entropy)

- Divide a quantum system into two parts, A and B. 

- Reduced density matrix of the subsystem A : 

- The entanglement entropy (EE) 

which is proportional to the area of the entangling surface (                ) 



describes the quantum entanglement detected by an observer who is only accessible to the subsystem B and can 

not receive any signal from A. 

This is similar to the Bekenstein-Hawking entropy of the black hole.

Since an observer sitting in the outside of the horizon, B, can not receive any information from A, we can regard A as a black 

hole and the boundary of A as the black hole horizon. 

A

B

2.  The entanglement entropy is utilized to figure out the black hole entropy

1.  The area law of the entanglement entropy is also similar to that of the 

black hole entropy



Due to the similarity to the black hole, 

Ryu and Takayanagi [2006] proposed the holographic entanglement entropy (hEE) following the AdS/CFT correspondence 

the EE of a d-dimensional CFT can be evaluated by the area of the minimal surface in the d+1-dim dual AdS gravity 

A

B

AdS



2-dim. CFT result [Calabrese-Cardy, 2004]

It is known that the entanglement entropy of the 2-dim CFT is given by

where l and L are the length of the subsystem A and the total system and      is a UV cutoff (lattice spacing) and c is 
the central charge of the CFT.

Away from criticality (fixed point), the entanglement entropy is replaced by

where       is the correlation length.

This is due to the infinite conformal symmetry and modular invariance of a 2-dim. CFT defined on the torus.



Aspects of the holographic entanglement entropy

General properties of the entanglement entropy

1) Area law of the entanglement entropy 

The leading term of the entanglement entropy is provided by the short distance interaction between two 

subsystems near the boundary. In the continuum limit, this term causes a UV divergence and its coefficient is 

proportional to the area of the entangling surface       (UV cutoff sensitive, regularization scheme dependent).



2) Subleading finite terms

There exists the terms not relying on a UV cutoff, which can provide an important physical information 

associated with the long range correlations. 

In general, the entanglement entropy crucially depends on the shape and size of the entangling surface. 

(i) for d=odd

- No logarithmic term

- There exists a constant term, F, which is identified with a free energy of the 3-dimesional dual CFT for d=3.

- For d=3,

F is the exact same as the free energy of 3-dim. CFT which has been checked by the comparison with the localization 
result. 



(ii) for d=even

with

- There exists a universal logarithmic term. Its coefficient is universal in that it is independent of the regularization 

scheme.

- The coefficient of the logarithmic term is independent of the entangling surface area, which is related to the a-
type anomaly. 

- Weyl anomaly of 4-dim. CFT, 

with



As a consequence, the logarithmic term is related to the anomaly and crucially depends on the dimension 

and shape of the entangling surface.

c-theorem by Zamoldchikov

When a 2-dim. CFT is deformed by a relevant operator, it flows to a new IR fixed point.

In this case, the central charge, which describes degrees of freedom of a system, monotonically decreases along the 

RG flow. 

In higher dimensional theory, is there a theorem similar to the C-theorem?

- For d=4, there exists two central charges, a and c. It has been believed that the a-type anomaly satisfies the 

c-theorem (a-theorem).

- For d=3, it has been conjectured that the free energy monotonically decreases along the RG flow (F-theorem).



F-theorem in 3-dim. CFT

RG flow under a relevant deformation

[Jafferis-Klebanov-Pufu-Safdi 2011, Myers-Sinha 2010] 

HEE with a spherical entangling surface in a 3-dim. CFT



For the entanglement entropy

we can also derive the similar structure, where the quantum entanglement transfers into a thermal quantity with a 

small quantum corrections. 

For the three-dimensional AdS (BTZ) black hole

with

thermodynamic quantities are given by

and satisfy the first law of thermodynamics



In the holographic context

the entanglement entropy can be evaluated as the area of the minimal surface extended in the dual geometry.

Then, the subsystem size and the entanglement entropy can be rewritten in terms 

of the turning point

This is an exact and analytic result.

When           

(ground state entanglement entropy, UV divergence)           



RG flow of the entanglement entropy

In order to go beyond the linearized lever and to describe the RG flow correctly, we need generalized concepts 
involving all higher order corrections.

We define a generalized thermodynamics-like law and generalized entanglement temperature involving all higher 
order correction and satisfying in the entire region

- This relation is defined in the UV region with neglecting higher order corrections.

with

- It is not valid in the IR region.

- It reproduces the linearized Einstein equation of the dual geometry.

Thermodynamics-like law of the entanglement entropy in the UV limit



Define a renormalized entanglement entropy (subtracting the ground state EE)

Then, the exact renormalized EE and a generalized entanglement temperature

Ignoring     order corrections, they are reduced to the known results.

with the previously defined entanglement temperature           

In the UV region (                ),

Note that the generalized entanglement temperature was defined to satisfy the thermodynamics-like law exactly 

with involving all higher order correction. Therefore, we can apply the thermodynamics-like law to the IR 

entanglement entropy. 



In the IR region (               ),

Reexpressing it in terms of the black hole entropy involved in the volume   , we reach to the similar result obtained 

from the black hole and CFT calculations 

Since                  in the IR limit, the IR entanglement entropy reduces to the thermal entropy with small quantum 

corrections. Also, we can see that the generalized entanglement temperature reduces to the real temperature.



Regardless of the dimensionality and microscopic detail of the dual field theory, the IR entanglement entropy reduces to 

: Universal

: depending on the dual theory

For a two-dimensional scale invariant theory

occurs in the real space renormalization group flow of the lattice theory (Ising model). This follows the volume law

Intriguingly, the universality of the IR entanglement entropy proposed from the holography



Reconstruction of the dual gravity from the entanglement entropy
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(a) Entanglement entropy (input) (b) Blackening factor (output)

Figure 1. (a) The entanglement entropy relying on the subsystem size. We evaluate the entanglement entropy
holographically for M = q0 = 1/2 with R = G = zh = 1, ✏ = 10�3, and N = 20. (b) When the entanglement
entropy data is given without knowing the values of M and ⇢0, we reconstruct the dual black hole geometry
only from the input data about the entanglement entropy.

1(a) indicate that the system we considered is a two-dimensional thermal system comprising two
types of matter.

Following the previous holographic description, we numerically reconstruct the blackening fac-
tor in Fig. 2 (b), which reproduces the given entanglement entropy data in Fig. 1(a). Using the
extrapolation of the numerical blackening factor in Fig. 1(b), we find that the event horizon appears
at

zh ⇡ 0.99986. (3.6)

After evaluating the slope of f(z) at the event horizon numerically, we also determine the Hawking
temperature

TH = �f 0(zh)

4⇡
⇡ 0.12054. (3.7)

From these numerical results, we can further determine the other parameter, ⇢0. To do so, we should
note that the entanglement entropy in Fig. 1(a) is that of the medium consisting of massless radia-
tion and massive particles. Therefore, we expect that the dual black hole, according to the previous
holographic relation in (2.5), has the following form

f(z) = 1� ⇢0 z �M z2, (3.8)

7

When the entanglement entropy of a 2-dim system consisting 

of two kinds of matter, radiation and massive particles, 

(1) can we reconstruct the dual gravity of this system?

(2) Can we read other physical properties of this system?

1. Logarithmic behavior in the UV limit (                     ): asymptotic AdS space 

2. Volume law in the IR limit (               ): thermal system

1 Newton’s Laws of Motion

SE ⇠ log ` (1)

2

1 Newton’s Laws of Motion

SE ⇠ ` (1)

2

1 Newton’s Laws of Motion

SE ⇠ log ` (1)

2

1 Newton’s Laws of Motion

SE ⇠ ` (1)

2

3. A general form of the dual gravity (black hole geometry)

Contents

1 Newton’s Laws of Motion 2

1 Newton’s Laws of Motion

ds2 =
R2

z2

✓
�f(z)dt2 +

1

f(z)
dz2 + dx2

◆
, (1)

1



Using the above metric ansatz, the corresponding entanglement entropy is determined by 

where V indicates a (d� 1)-dimensional regularized volume. From the holography point of view, the
black hole’s temperature and entropy are reinterpreted as those of the dual QFT. The other thermody-
namic quantities can be derived by applying the thermodynamics law

dU(SBH , Na, V ) = TH dSBH +
X

a

µa dNa � P dV, (2.7)

where Na are n conserved quantities, Np = ⇢pV with p = 1, · · · , n � 1. As a result, when the
volume is fixed, the thermal system is characterized by temperature and matter densities and then
other thermodynamic quantities are given by functions of the thermodynamic variables, TH and ⇢p.

At given Na and V , the internal energy of the thermal system is derived by

U(SBH , Na, V ) =

Z
TH dSBH =

(d� 1)Rd�1V

16⇡G

Z
dzh

f 0(zh)

zd
h

. (2.8)

After the Legendre transformation, the free energy also reads

F (TH , Na, V ) = U � TH SBH . (2.9)

Defining the ground state energy and pressure at zero temperature

U0 = lim
TH!0

U,

P0 = lim
TH!0

P = � lim
TH!0

@F

@V

����
TH ,Na

, (2.10)

the thermal energy and thermal pressure become

Uth = U � U0 and Pth = P � P0. (2.11)

From these thermodynamic quantities, we evaluate some physical quantities characterizing the ther-
mal system, like an equation of state and a specific heat

w =
PthV

Uth

and cV =
@Uth

@TH

. (2.12)

Now, we consider the entanglement entropy of the dual thermal system. To evaluate the en-
tanglement entropy, we take into account a strip-shaped subsystem, �`/2  x1 = x  `/2 and
�L/2  xi  L/2 with L ! 1. In the holographic setup, its entanglement entropy is described by
a minimal surface extending to the dual geometry. This is called the Ryu-Takayanagi formula. Then,
the entanglement entropy is determined by the area of a minimal surface

SE =
Rd�1 Vd�2

4G

Z
`/2

�`/2

dx

p
z02 + f

zd�1
p
f

, (2.13)

4
In this case, the subsystem size and entanglement entropy are characterized by a turning point

where Vd�2 = Ld�2 and the prime means a derivative with respect to x. Using the conserved quantities
and introducing a turning point zt where z0 = 0, we determine the subsystem size and entanglement
entropy as functions of the turning point

`(zt) =

Z
zt

✏

dz
2zd�1

p
f(z)

q
z2(d�1)
t � z2(d�1)

,

SE(zt) =
Rd�1 Vd�2

2G

Z
zt

✏

dz
zd�1
t

zd�1
p
f(z)

q
z2(d�1)
t � z2(d�1)

, (2.14)

where ✏ is introduced as a UV cutoff. Here, we can remove the UV cutoff by applying an appropriate
renormalization procedure. In this work, for convenience, we utilize a small physical UV cutoff
✏ = 10�3 like a lattice spacing of condensed matter theory.

Combining the above two relations and removing the turning point, we can also determine the
entanglement entropy as a function of the subsystem size, SE(`). In this case, the entanglement
entropy always satisfies the following relation

dSE

d`
=

Vd�2

4G

Rd�1

zd�1
t

. (2.15)

In an infinite subsystem size limit (` ! 1 and zt ! zh), the entanglement entropy is reduced to the
Bekenstein-Hawking entropy

SBH = lim
zt!zh

SE =
V

4G

Rd�1

zd�1
h

, (2.16)

where a d-dimensional volume is given by V = `Ld�2.

3 Multiple-hairs black hole as the effective theory of a dual thermal system

From now on, we investigate how to reconstruct the dual geometry from a given entanglement entropy.
This is the inverse procedure of the holography explained in the previous section. In earlier works, this
was achieved by applying various machine learning techniques. In this work, we reconstruct the dual
geometry by solving the above integral equation (3.3) numerically. Assuming that the holography is
correct, the holographic relation (3.3) must be satisfied regardless of bulk geometries. Therefore, one
can find the metric function by solving the holographic relation (3.3) when entanglement entropy data
is given. In order to find the dual geometry, we first assume that QFT is UV-complete. This allows
QFT to have a UV fixed point and requires the dual geometry to be an asymptotic AdS space with
f(0) = 1.

5
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zt (1)

1

Solving these integral equations, we find       and            , which determines the black hole geometry. 
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zt (1)
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Now, we parametrize the radial coordinate as

zi = ✏+ i �z (3.1)

with

�z =
zh � ✏

N
(3.2)

where N is a large integer. Then, the range of z is restricted to be in ✏  z  zh, where ✏ was
introduced as a physical UV cutoff like a lattice spacing. According to the holography principle in
(3.3), the subsystem size and entanglement entropy are determined by the radial coordinate in (3.1)

`n =
nX

i=1

Z
zi

zi�1

dz
2zp

f̄(zi)
p

z2
n
� z2

,

Sn =
nX

i=1

R

2G

Z
zi

zi�1

dz
zn

z
p

f̄(zi)
p

z2
n
� z2

, (3.3)

where zn parametrises the turning point and f̄(zi) is defined as the average value of f(zi�1) and f(zi)

f̄(zi) =
f(zi�1) + f(zi)

2
. (3.4)

After imposing the boundary condition, f(z0) = 1 where z0 = ✏, we can find f(zi) successively.
For example, when we set n = 1, `1 and S1 depend only on f(z1). Combining these results, we find
f(z1) satisfying `1 = `(z1) and S1 = SE(z1) simultaneously. Using the known f(z0) and f(z1), we
also find f(z2) satisfying `2 = `(z2) and S2 = SE(z2). Repeating this procedure, we finally obtain
f(zi) for i = 1, · · · , n. Then, we derive the metric factor from the entanglement entropy data SE(`)

f̄(z̄i) =
f(zi�1) + f(zi)

2
at z̄i =

zi�1 + zi
2

, (3.5)

which corresponds to the average value of f(z) in the range of zi�1  z  zi.

3.1 Thermodynamic quantities from reconstructed black hole geometry

Let us first assume that we measure the entanglement entropy, SE(`), of a certain two-dimensional
system composed of radiation and massive particles, as shown in Fig. 1(a). The data in Fig. 1(a)
shows that the entanglement entropy in the large size limit linearly increases with a subsystem size
`, which corresponds to the volume of the subsystem. The entanglement entropy proportional to the
volume is the typical feature of a thermal system. Therefore, the entanglement entropy data in Fig.
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Figure 1. (a) The entanglement entropy relying on the subsystem size. We evaluate the entanglement entropy
holographically for M = q0 = 1/2 with R = G = zh = 1, ✏ = 10�3, and N = 20. (b) When the entanglement
entropy data is given without knowing the values of M and ⇢0, we reconstruct the dual black hole geometry
only from the input data about the entanglement entropy.

1(a) indicate that the system we considered is a two-dimensional thermal system comprising two
types of matter.

Following the previous holographic description, we numerically reconstruct the blackening fac-
tor in Fig. 2 (b), which reproduces the given entanglement entropy data in Fig. 1(a). Using the
extrapolation of the numerical blackening factor in Fig. 1(b), we find that the event horizon appears
at

zh ⇡ 0.99986. (3.6)

After evaluating the slope of f(z) at the event horizon numerically, we also determine the Hawking
temperature

TH = �f 0(zh)

4⇡
⇡ 0.12054. (3.7)

From these numerical results, we can further determine the other parameter, ⇢0. To do so, we should
note that the entanglement entropy in Fig. 1(a) is that of the medium consisting of massless radia-
tion and massive particles. Therefore, we expect that the dual black hole, according to the previous
holographic relation in (2.5), has the following form

f(z) = 1� ⇢0 z �M z2, (3.8)
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: number density of massive particles

where the values of ⇢0 and M are not determined yet. Since the black hole must have an event
horizon satisfying f(zh) = 0, the black hole mass is rewritten as a function of zh and ⇢0. Therefore,
the blackening factor is reexpressed as

f(z) = 1� ⇢0 z �
1� ⇢0 zh

z2
h

z2. (3.9)

Using this metric form together with the numerical values, zh in (3.6) and TH in (3.7), the density of
massive particles is determined as

⇢0 =
2

z̄h
� 4⇡TH ⇡ 0.48553. (3.10)

As a result, the obtained numerical values determine the blackening factor, which is the dual geometry
of the given entanglement entropy data

f(z) = 1� 0.48553 z � 0.51468 z2. (3.11)

Above, we reconstruct the black hole geometry from the entanglement entropy of a thermal
system. In the holographic study, constructing the dual geometry is important because it can play
the role of an effective theory governing the considered thermal system. Once the dual geometry is
reconstructed, it can explain the given entanglement entropy data as well as give us more information
about other physical properties. Since the system we took into account here is a thermal system, the
thermal properties of this system must be well defined. Can we know such thermodynamic quantities
from the entanglement entropy data? If we don’t know the direct relation between the entanglement
entropy and thermal quantities, we cannot determine the thermodynamic properties of the considered
system. However, if we can reconstruct the dual geometry as done above, we can account for the
thermal quantities from the reconstructed dual black hole geometry.

Applying the thermodynamic law in (2.7) to the reconstructed black hole geometry in (3.11), we
find that the thermal system allowing the entanglement entropy in Fig. 1(a) has the following internal
energy

U =
16⇡2T 2

H
� ⇢20

64⇡

RV

G
. (3.12)

Here, the first term corresponds to the ground state’s internal energy, while the last term describes
thermal energy

Uth =
⇡T 2

H

4

RV

G
⇡ 0.01141

RV

G
. (3.13)
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Then, the massive particle’s density is determined from the above numerical data 
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From the black hole’s thermodynamics
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After evaluating the free energy

F ⌘ U � TH SBH = �(4⇡TH + ⇢0)
2

64⇡

RV

G
, (3.14)

we further find the thermal pressure

Pth =
2⇡T 2

H
+ ⇢0 TH

8

R

G
⇡ 0.01873

R

G
. (3.15)

Using these thermodynamic quantities, we see that the considered thermal system has the following
equation of state and specific heat

w = 1 +
⇢0

2⇡TH

⇡ 1.64107,

cV =
⇡TH

2

RV

G
⇡ 0.18934

RV

G
> 0. (3.16)

Here, the specific heat is positive, so the thermal system we considered is thermodynamically stable.
In Table 1, we summarize the obtained numerical results and compare them with the true values.

Derived value True value Error
Uth 0.01141 0.01119 1.97 %
Pth 0.01873 0.01865 0.43 %
w 1.64107 1.66667 1.54 %
cV 0.18934 0.18750 0.98 %

Table 1. We summarize the thermodynamic quantities derived from the reconstructed dual black hole
geometry with R = V = G = 1 and compare them to the true values derived with M = q0 = 1/2.

3.2 Thermal system composed of three matters

Let us consider a three-dimensional medium, consisting of massless radiation, massive particles, and
one-dimensional solitonic objects, at finite temperature. When the entanglement entropy of this ther-
mal system is known, can we know other thermodynamic quantities from the entanglement entropy
data? From the holographic relation discussed before, we first expect the metric form of the dual
black hole geometry

f(z) = 1� ⇢1 z � ⇢0 z
2 �M z3, (3.17)
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Here, the specific heat is positive, so the thermal system we considered is thermodynamically stable.
In Table 1, we summarize the obtained numerical results and compare them with the true values.
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Figure 1. (a) The entanglement entropy relying on the subsystem size. We evaluate the entanglement entropy
holographically for M = q0 = 1/2 with R = G = zh = 1, ✏ = 10�3, and N = 20. (b) When the entanglement
entropy data is given without knowing the values of M and ⇢0, we reconstruct the dual black hole geometry
only from the input data about the entanglement entropy.

1(a) indicate that the system we considered is a two-dimensional thermal system comprising two
types of matter.

Following the previous holographic description, we numerically reconstruct the blackening fac-
tor in Fig. 2 (b), which reproduces the given entanglement entropy data in Fig. 1(a). Using the
extrapolation of the numerical blackening factor in Fig. 1(b), we find that the event horizon appears
at

zh ⇡ 0.99986. (3.6)

After evaluating the slope of f(z) at the event horizon numerically, we also determine the Hawking
temperature

TH = �f 0(zh)

4⇡
⇡ 0.12054. (3.7)

From these numerical results, we can further determine the other parameter, ⇢0. To do so, we should
note that the entanglement entropy in Fig. 1(a) is that of the medium consisting of massless radia-
tion and massive particles. Therefore, we expect that the dual black hole, according to the previous
holographic relation in (2.5), has the following form

f(z) = 1� ⇢0 z �M z2, (3.8)
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h
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1 Introduction

Without counterterms

1. Motivated by the condensed matter theory where a natural UV cutoff corresponding to a lattice
spacing exists as a physical scale, we consider a dual gravity theory of such a condensed matter
system. Denoting the lattice spacing a = 1/⇤, ⇤ is physical and corresponds to the boundary
position in the dual gravity theory.

2. In this case, the dual QFT defined at the boundary is an effective renormalized QFT because it
has already contained the effect of the counterterms.

3. We consider the holography dual, which is renormalized at the scale ⇤ and then identify the
gravitational action with the generating functional of the dual QFT.

SE =
cUV

3
log ` (1.1)
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For d=2

with an appropriate initial condition of �(y) = �0 +±i
p
2

Z
dy

p
A00(y),

V = 2� 2R2
A

0(y)2 �R
2
A

00(y) (1.1)

The rest of this paper is organized as follows. [1–4]
[5]

2

To study the change of a ground state, from now on, we concentrate on the RG flow of the
entanglement entropy. To define the entanglement entropy, we first take a subsystem with size `.
In the holographic setup, the entanglement entropy is determined by the area of a minimal surface
extending to the dual geometry. In the previous interpolating geometry (??), the entanglement entropy
is governed by [? ? ]

SE =
1

4G

Z
`/2

�`/2

dx

p
y02 + e2A(y), (4.8)

where the prime means a derivative with respect to x. Using the conserved quantity, the subsystem
size and entanglement entropy can be reexpressed as functions of a turning point yt, at which y

0 = 0,

` =

Z ⇤y

yt

dy
2

e2A(y)
p
e�2At � e�2A(y)

, (4.9)

SE =
1

2G

Z ⇤y

yt

dy
e
�At

p
e�2At � e�2A(y)

, (4.10)

where At = A(yt) and ⇤y denotes a UV cutoff.
Once the metric factor A(y) is determined from the entanglement entropy, the scalar field profile

and the scalar potential from the expected equations of motion in (4.4) are also determined from A(y)

up to an initial value of �1 at y = 1

�(y) = �1 ±
p
2

Z
dy

p
|A00(y)|,

V (y) = 2�R
2
�
2A0(y)2 + A

00(y)
�
. (4.11)

5 Discussion
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one can obtain the following entanglement entropy by applying the corner transfer matrix method [35]

SE = ✏
1X

j=0

2j + 1

1 + e(2j+1)✏
+

1X

j=0

log
�
1 + e�(2j+1)✏

�
for g < 1,

= ✏
1X

j=0

2j

1 + e2j✏
+

1X

j=0

log
�
1 + e�2j✏

�
for g > 1, (2.2)

with the energy gap between energy levels

✏ = ⇡
K(

p
1� 1/g2)

K(1/g)
, (2.3)

where K(1/g) is a complete elliptic integral of the first kind. Near the critical point at g = 1, the
entanglement entropy is approximated by

SE ⇡ �
1

12
log

✓
1�

1

g

◆
, (2.4)

and leads to a logarithmic divergence at g = 1. In this case, the logarithmic divergence originated
from the scale symmetry, which naturally appears at a second-order phase transition. This is a typical
feature of two-dimensional QFTs. For higher dimensional QFTs, however, a scaling symmetry leads
to a power-law divergence instead of a logarithmic one. For two-dimensional QFTs, the relation
between a logarithmic divergence and scale symmetry becomes manifest when we consider other
critical points. For instance, it was also well known that the entanglement entropy gives rise to
another logarithmic divergence at a UV fixed point. This is also true at IR fixed points, as will be
seen later, where a new nonperturbative ground state occurs with restoring a scaling symmetry. As
shown here, the entanglement entropy is one of the good quantities detecting the nonperturbative
change of a ground state. Nevertheless, it is not easy to calculate the nonperturbative entanglement
entropy for interacting QFTs. In this work, we investigate the RG flow of the entanglement entropy
holographically by studying the change of a ground state.

3 Holographic dual of an RG flow from a UV to IR fixed point

We take into account a two-dimensional CFT deformed by a relevant operator. Even when a UV
theory is weakly interacting, IR physics triggered by a relevant deformation can strongly interact.
Therefore, knowing IR physics requires understanding a nonperturbative RG flow. To study such a
nonperturbative RG flow in the holographic setup, we consider a three-dimensional gravity theory
with a bulk scalar field

S =
1

16⇡G

Z
d3X

p
�g

✓
R�

1

2
@M�@M��

V (�)

R2
UV

◆
. (3.1)
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To describe an RG flow from a UV CFT to a new IR CFT, we introduce the following simple scalar
potential as a toy model

V (�) = 2R2
UV

⇤UV +
M2

�

2
�2 +

�

4
�4 = 2R2

UV
⇤UV +

�

4
�2

✓
�2

� 2
m2

�

�

◆
, (3.2)

where M2
�
= �m2

�
< 0, � > 0 and ⇤UV = �1/R2

UV
with a UV AdS radius RUV . Note that here

we exploit dimensionless field � and coupling constants, m2
�

and �. The scalar potential considered
here allows one local maximum, V = �2⇤UV at � = 0, and two degenerated local minima, V =

2R2
UV

⇤UV �m4
�
/4� at �± = ±m�/

p
�.

We concentrate on the RG flow from a UV CFT to another IR CFT. Such an RG flow in the
holographic setup can be realized by a geometric solution interpolating a local maximum to one of
the local minima. A local maximum and minimum correspond to an unstable or stable equilibrium
point on the gravity side, so the scalar field rolls down from a maximum to a minimum. In other
words, a rolling motion in the gravity maps to an RG flow of the dual QFT. From now on, we take
into account the RG flow from a UV CFT at � = 0 to an IR CFT at �+ = �IR. On the dual QFT side,
the corresponding RG flow can be triggered by a relevant operator. To consider a relevant operator,
we assume that the bulk scalar field has a negative mass square in the range of 0 < �M2

�
= m2

�
< 1.

If the bulk scalar field depends only on the radial coordinate, the boundary Lorentz symmetry is
preserved. In this case, the most general metric ansatz is given by

ds2 = dy2 + e2A(y)⌘µ⌫dx
µdx⌫ . (3.3)

Here, UV and IR fixed points appear at y = 1 and �1, respectively.
A geometric solution interpolating two fixed points is obtained by solving the following equations

of motion

0 = A02
�

1

4
�02

�
m2

�

4R2
UV

�2 +
�

8R2
UV

�4
�

1

R2
UV

, (3.4)

0 = A00 + A02 +
1

4
�02

�
m2

�

4R2
UV

�2 +
�

8R2
UV

�4
�

1

R2
UV

, (3.5)

0 = �00 + 2A0�0 +
m2

�

R2
UV

��
�

R2
UV

�3, (3.6)

where the prime means a derivative with respect to the radial coordinate, y. Here, the first equation is
a constraint, and the others determine the dynamics of � and A. After taking RUV = 1, m� =

p
3/2

and � = 0.1, we solve the above equations numerically and depict the numerical result in Fig. 1. At
the UV fixed point, the result in Fig. 1 shows that the asymptotic geometry is given by an AdS space
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with

(a) �(y) (b) dA(y)/dy

Figure 1. Profiles of (a) the scalar field �(y) and (b) the derivative of the metric factor, dA(y)/dy, where we
take RUV = 1, m� =

p
3/2 and � = 0.1. At the UV fixed point (y = 1), � = 0 and dA/dy = 1, whereas

they are modified into � = �IR = 2.7386 and dA/dy = 1.3050 at the IR fixed point (y = �1).

with � = 0 and A(y) = y/RUV at y = 1. On the other hand, � and A0 approach �IR = 2.7386 and
A0 = 1.3050 at the IR fixed point (y = �1) which again leads to another AdS space, A(y) = y/RIR

at y = �1 with a new IR AdS radius RIR = 0.7663RUV . In the holographic study, these two
UV and IR AdS spaces are mapped to UV and IR fixed points of the dual QFT where a conformal
symmetry is restored with vanishing �-functions.

3.1 Dual QFT from the momentum-space RG flow point of view

Above, we studied the geometric solution interpolating unstable and stable equilibrium points. Ac-
cording to the holography, it can be reinterpreted as an RG flow from a UV to IR fixed point. This
feature can be clarified by two different holographic descriptions, momentum-space and real-space
RG flows. We first discuss the dual of the interpolating geometry from the momentum-space RG flow
point of view.

When the scalar field is absent, the previous gravity theory allows an AdS space as an exact
solution. Since the isometry of an AdS space is equivalent to the conformal symmetry of the dual QFT,
a (d + 1)-dimensional AdS space is mapped to the ground state of a d-dimensional CFT. Therefore,
the above interpolating geometry can be regarded as the deformation of the CFT. For 0 < m2

�
< 1,

the bulk field � rapidly suppresses in the asymptotic region (y ! 1) and the effect of ��4 becomes
negligible. As a result, the metric factor is well approximated by the AdS one, A(y) = y/RUV , which
is the dual of a UV CFT. Introducing a new radial coordinate z to describe UV physics

z = RUV e�y/RUV , (3.7)
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The rest of this paper is organized as follows. [? ? ? ? ]
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1 + e�2j✏

�
for g > 1, (2.2)

with the energy gap between energy levels

✏ = ⇡
K(

p
1� 1/g2)

K(1/g)
, (2.3)

where K(1/g) is a complete elliptic integral of the first kind. Near the critical point at g = 1, the
entanglement entropy is approximated by

SE ⇡ �
1

12
log

✓
1�

1

g

◆
, (2.4)

and leads to a logarithmic divergence at g = 1. In this case, the logarithmic divergence originated
from the scale symmetry, which naturally appears at a second-order phase transition. This is a typical
feature of two-dimensional QFTs. For higher dimensional QFTs, however, a scaling symmetry leads
to a power-law divergence instead of a logarithmic one. For two-dimensional QFTs, the relation
between a logarithmic divergence and scale symmetry becomes manifest when we consider other
critical points. For instance, it was also well known that the entanglement entropy gives rise to
another logarithmic divergence at a UV fixed point. This is also true at IR fixed points, as will be
seen later, where a new nonperturbative ground state occurs with restoring a scaling symmetry. As
shown here, the entanglement entropy is one of the good quantities detecting the nonperturbative
change of a ground state. Nevertheless, it is not easy to calculate the nonperturbative entanglement
entropy for interacting QFTs. In this work, we investigate the RG flow of the entanglement entropy
holographically by studying the change of a ground state.

3 Holographic dual of an RG flow from a UV to IR fixed point

We take into account a two-dimensional CFT deformed by a relevant operator. Even when a UV
theory is weakly interacting, IR physics triggered by a relevant deformation can strongly interact.
Therefore, knowing IR physics requires understanding a nonperturbative RG flow. To study such a
nonperturbative RG flow in the holographic setup, we consider a three-dimensional gravity theory
with a bulk scalar field

S =
1

16⇡G

Z
d3X

p
�g

✓
R�

1

2
@M�@M��

V (�)

R2
UV

◆
. (3.1)
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To describe an RG flow from a UV CFT to a new IR CFT, we introduce the following simple scalar
potential as a toy model

V (�) = 2R2
UV

⇤UV +
M2

�

2
�2 +

�

4
�4 = 2R2

UV
⇤UV +

�

4
�2

✓
�2

� 2
m2

�

�

◆
, (3.2)

where M2
�
= �m2

�
< 0, � > 0 and ⇤UV = �1/R2

UV
with a UV AdS radius RUV . Note that here

we exploit dimensionless field � and coupling constants, m2
�

and �. The scalar potential considered
here allows one local maximum, V = �2⇤UV at � = 0, and two degenerated local minima, V =

2R2
UV

⇤UV �m4
�
/4� at �± = ±m�/

p
�.

We concentrate on the RG flow from a UV CFT to another IR CFT. Such an RG flow in the
holographic setup can be realized by a geometric solution interpolating a local maximum to one of
the local minima. A local maximum and minimum correspond to an unstable or stable equilibrium
point on the gravity side, so the scalar field rolls down from a maximum to a minimum. In other
words, a rolling motion in the gravity maps to an RG flow of the dual QFT. From now on, we take
into account the RG flow from a UV CFT at � = 0 to an IR CFT at �+ = �IR. On the dual QFT side,
the corresponding RG flow can be triggered by a relevant operator. To consider a relevant operator,
we assume that the bulk scalar field has a negative mass square in the range of 0 < �M2

�
= m2

�
< 1.

If the bulk scalar field depends only on the radial coordinate, the boundary Lorentz symmetry is
preserved. In this case, the most general metric ansatz is given by

ds2 = dy2 + e2A(y)⌘µ⌫dx
µdx⌫ . (3.3)

Here, UV and IR fixed points appear at y = 1 and �1, respectively.
A geometric solution interpolating two fixed points is obtained by solving the following equations

of motion

0 = A02
�

1

4
�02

�
m2

�

4R2
UV

�2 +
�

8R2
UV

�4
�

1

R2
UV

, (3.4)

0 = A00 + A02 +
1

4
�02

�
m2

�

4R2
UV

�2 +
�

8R2
UV

�4
�

1

R2
UV

, (3.5)

0 = �00 + 2A0�0 +
m2

�

R2
UV

��
�

R2
UV

�3, (3.6)

where the prime means a derivative with respect to the radial coordinate, y. Here, the first equation is
a constraint, and the others determine the dynamics of � and A. After taking RUV = 1, m� =

p
3/2

and � = 0.1, we solve the above equations numerically and depict the numerical result in Fig. 1. At
the UV fixed point, the result in Fig. 1 shows that the asymptotic geometry is given by an AdS space
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with

(a) �(y) (b) dA(y)/dy

Figure 1. Profiles of (a) the scalar field �(y) and (b) the derivative of the metric factor, dA(y)/dy, where we
take RUV = 1, m� =

p
3/2 and � = 0.1. At the UV fixed point (y = 1), � = 0 and dA/dy = 1, whereas

they are modified into � = �IR = 2.7386 and dA/dy = 1.3050 at the IR fixed point (y = �1).

with � = 0 and A(y) = y/RUV at y = 1. On the other hand, � and A0 approach �IR = 2.7386 and
A0 = 1.3050 at the IR fixed point (y = �1) which again leads to another AdS space, A(y) = y/RIR

at y = �1 with a new IR AdS radius RIR = 0.7663RUV . In the holographic study, these two
UV and IR AdS spaces are mapped to UV and IR fixed points of the dual QFT where a conformal
symmetry is restored with vanishing �-functions.

3.1 Dual QFT from the momentum-space RG flow point of view

Above, we studied the geometric solution interpolating unstable and stable equilibrium points. Ac-
cording to the holography, it can be reinterpreted as an RG flow from a UV to IR fixed point. This
feature can be clarified by two different holographic descriptions, momentum-space and real-space
RG flows. We first discuss the dual of the interpolating geometry from the momentum-space RG flow
point of view.

When the scalar field is absent, the previous gravity theory allows an AdS space as an exact
solution. Since the isometry of an AdS space is equivalent to the conformal symmetry of the dual QFT,
a (d + 1)-dimensional AdS space is mapped to the ground state of a d-dimensional CFT. Therefore,
the above interpolating geometry can be regarded as the deformation of the CFT. For 0 < m2

�
< 1,

the bulk field � rapidly suppresses in the asymptotic region (y ! 1) and the effect of ��4 becomes
negligible. As a result, the metric factor is well approximated by the AdS one, A(y) = y/RUV , which
is the dual of a UV CFT. Introducing a new radial coordinate z to describe UV physics

z = RUV e�y/RUV , (3.7)

6

�(y) = �0 +±i
p
2

Z
dy

p
A00(y),

V = 2� 2R2
A

0(y)2 �R
2
A

00(y) (1.1)

, � = 3 (1.2)

The rest of this paper is organized as follows. [? ? ? ? ]
[? ]
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Beta-function (left) and c-function (right)
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