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Do we have a good reason to go Beyond the Standard Model?

* SM fails to explain neutrino massand ™.~
mixings. AV

e SM doesn’t have DM candidate.

* SM fails to explain observed baryon
asymmetry.




Who can be a DM ?

~ Should be massive
- Should be electrically neutral

~ Should be present in early universe

pe stable or at least with half life greater than the
ne universe




Zoo of Dark Matter Candidates

| exist in QCD so
why
can't | be dark?

1 am still If he dies it's
the king my turn

| do not like to
interact with anyon

TS B

Well..we never
know..

I'm still in the pic
you know...

‘I bad luck...
T, e

o] scenario

| have to freeze-in
to survive

o

©

dark photon _H




Overview WIMP Mechanism
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» Strongly constrained by direct and indirect detection experiments.



The new WIMP

In the early universe:

pair annihilation co-annihilation

N N
7" '\ 7\

Griest, Seckel 1991

co-scattering freeze-in

\./ /

/\ N\

Ruderman et al. 2017 Hall et al. 2009

[ in thermal equilibriumj

smaller coupling / longer lifetime

[ out of equilibrium j
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Models with co-scattering
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Talk by Susanne



Higgs Portal : Singlet Scalar DM

Dagk Mattzer MallSS , Dark Matter Couplings
MX = Py T §)W

"Higgs Portal”

Simplest extension of the Standard Model...

, dark matter: real scalar singlet (stable due to Z, imposed symmetry)

- phenomenology (at the tree-level) governed by only two parameters

> One coupling (to Higgs) drives all DM observables — DM relic, Direct Detection,
Indirect Detection.



Higgs Portal : Singlet Scalar DM

Qcpmh® ~ 0.12
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Dark matter annihilation into: gauge bosons, Higgs bosons, quarks, leptons.
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Higgs Portal : Singlet Scalar DM

Higgs portal interactions give spin-independent nuclear scattering via t-channel Higgs exchange.
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Direct detection limits imply that the Higgs-portal coupling must be suppressed.




Higgs Portal : Singlet Scalar DM

_ _ Anticipated
DM Relic Density Disagreement DM Direct Detection
??

Requires large Higgs Portal Couplings Requires Suppressed Higgs Portal Couplings

(MH)T=m,
Imm * DD constraint -> DM annihilation primarily to

gauge bosons decouples from thermal bath
e due to suppressed “Higgs Portal” coupling.
- 108
S (-  If Singlet Scalar is viable WIMP DM, we need
10-5 | i alternate production mechanism to realize the
observed DM relic density.

1073 4

DM never thermalizes, it behaves as 12

My [GeV] non-thermal particle



Singlet Scalar DM + dimension-5 Operators

: Tree level neutrino mass:

— X NI,Q — _NLQ : forbidden by 2, symmetry

—~— —~—

Leyy ?@P“PXQ + R (Le@)(PTL)

Suppressed due DD constraint

‘Production Process

v h v

+ XLONX + £ N0, NB".

Introduces additional DM dilution processes

> y and N;, may or may not be in
equillibrium with each other.

Annihilation Co-Annihilation Co-Scatterings
XN],Q — SM SM 20 SM— N, SM

Nia Ni2— SMSM X SM— Nip

xXx —SMSM

> (). h? is set either through co-
annihilation or co-scattering.




Singlet Scalar DM + dimension-5 Operators

N T e — DM dilution through inelastic
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Singlet Scalar DM + dimension-5 Operators
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Coscattering equations (conversion-driven freeze-out)

* if DM is very weakly coupled to the SM, DM self-annihilation is

negligible

* in the following, O : SM, 1: N (=N1 + N2), 2: Dark Matter DM

dY; 1 s(M . YA Inelastic Processes
i __1 U4 [<amov><yf _veey Ee)y, Ly, )} j
dx x* H(M,) S Y] 9 1
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y", A~ O(107% —10~1Y) >DM pair annihilation, co-annihilation, and exchange 16

Process becomes negligible



Coscattering fraction

« When Y and ¢, is small, co-scattering keeps y coupled to the N(=N1+N2).
* without coscattering, DM freezes out very early = too high relic density

 to quantify when coscattering is necessary to keep y coupled to the N(=N1+N2).

AL =y Qh?(Single)
% Qh2(Coupled)

> if co-annihilation dominant = A, =0(Y>10"")

> if co-scattering dominant= A} =1(Y <107) "



Evolution of DM: co-scattering,
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> DM'is chemically decoupled at early times x~2
» All 2 — 2 process of DM decouple and inverse decay is inefficient to restore
chemical equilibrium

» Freeze-out occurs at late times when inverse decay yv — N, stops



Decay of N1 and N2
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N1 invisible at collider and N2 dominantly decay to photon + MET
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Collider Signal

jet + MET (mono-jet)
vy + MET (mono-photon) &

— B
(s N O'WN B

* N2 - N1+y (leading mode), N2 - N1Z, N2 - xv pp = h = Yx j can also lead
« N1 - x v (MET) to mono-jet but suppressed
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Mono-jet signal
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Collider Signal
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+ Cross-section scale as (Cé)2
* Mono-photon via Higher Mn2-Mn: -> energetic photon -> stronger limit

pp — Ni(— y v) No(— Ny y)is

leading channel mono-y gives the leading

» Mono-jet : pp — NN, j (rates drops signal.

for p7(j) > 200 GeV)




Numerical results
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« “Dark matter + energetic photon in ATLAS (arXiv: 2011.05259): parameter space

constraints

» Large ¢, leads to energetic photons. Hence, stringent constraints.

23



Numerical results
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Parameter Scan

Parameter

Scanned range
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[1073 , 1] ([~ M, 1500])
[16—* . 10
[G=" 5 10°9]
(1076, 1073

o Relic dénsity: 1074 < Qxhz <0.1224

* Mono-photon search constrain larger My,

* Parameter space can be yroﬁecf at HL-LHC
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Numerical results

LHC Limit HL-LHC Projection
1000 10 1000 0
Disallowed g out of HL-LHC reach
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Higher My2-Mn1 -> energetic photon -> stronger limit
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Summary

Features of co-scattering dark matter:
* small coupling to visible matter
e compressed dark sector

 freeze-out works for a wide range of energies

Singlet Scalar DM + dim-5 operators: consistent with DD, ID & collider bounds

Viable parameter space can be probed at HL-LHC

27
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