

Department of Physics, Shanghai University

Stability of Neutron-Dark Matter Mixed Stars and Hybrid Stars

Kilar Zhang

kilar@shu.edu.cn

Dec 27, 2025

Outline

① Introduction

② Star Model Setup

③ Stability Criteria

④ Results

⑤ Conclusion

The Big Picture: Multi-Messenger Astronomy & Dark Matter

- We live in the multi-messenger era (GWs, EM, neutrinos)
- Compact stars - extreme cosmic labs
- A fundamental mystery: What is DM?

Can we **probe Dark Matter (DM)** inside compact stars?

Figure: LIGO

Figure: NICER

Figure: Hubble Image

The Multi-Fluid Challenge in Compact Star Astrophysics

How do **multi-fluid systems (e.g., DM+NM)** maintain equilibrium under extreme gravity?

Its **stability**?

Two Ways to coexist: Hybrid vs. Mixed Stars

Two Scenarios:

- Hybrid Stars:
Strong non-gravitational interactions -> Phase separation
-> Layered.
- Mixed Stars:
Gravitational-only interactions ->
Mixed core

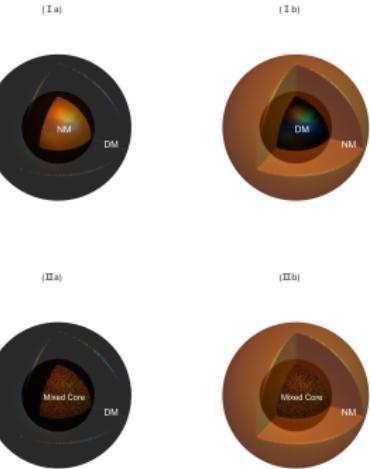


Figure: Star Model Setup

Two Routes to Stability

Dynamic vs. Static Criteria

Dynamic Criterion (Standard)

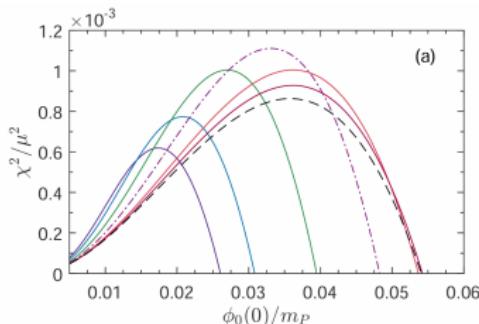
Solve pulsation equations

criterion:

Sign of squared fundamental frequency ω_0^2

Rigorous **but** computationally expensive

[Chandrasekhar 1964, Kain 2020]



[Kain 2021]

Static Criterion (Efficient)

Analyze equilibrium solutions only

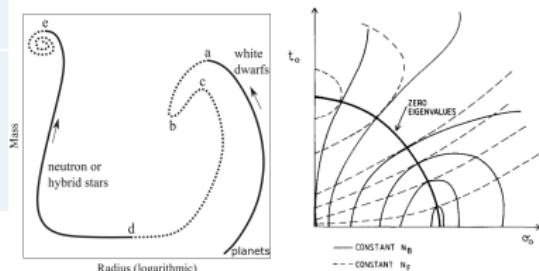
Key insight:

At marginal stability, conserved quantities can reach their extreme values simultaneously

Fast **but** the rigor has not been fully proven

[Henriques et al. 1990]

Are they equivalent?



[Alford 2017, Henriques et al. 1990]

Proof of Equivalence

Zero Mode and Parallel Gradients

$$Step 1 \quad \omega_n^2 = 0 \iff \nabla M \parallel \nabla N_1 \parallel \nabla N_2$$

- ▶ zero-frequency mode
- ▶ infinitely slow transition between adjacent configurations
 - ▶ modes preserve M and N_I
(with flow $J_{N_I}^\mu = n_I u^\mu$, $J_{M_I}^\mu = T_I^{\mu 0}$ and charge $Q_{N_I} = N_I$, $Q_{M_I} = M_I$)
- ▶ M and N_I both attain their extremal along certain direction

Theorem 1 Parallel Condition

For a two-fluid equilibrium configuration, the three gradients, ∇M , ∇N_1 , and ∇N_2 , are mutually parallel if and only if there exists at least a zero mode respect to radial perturbation ($\exists n \in \mathbb{N}$ s.t. $\omega_n^2 = 0$).

Step 2 Reduce the condition to: two of the three gradients ∇M , ∇N_1 and ∇N_2 being parallel

Theorem 2 Variational Principle

A two-fluid isentropic mixed star configuration satisfies the equilibrium equations if and only if the total mass M takes its extremal with respect to all time-independent variations that conserve the particle numbers of both fluids.

- ▶ See [Zhou et.al 2025] for detailed proof process

⇒ **The critical curve ($\nabla M \parallel \nabla N_I$) exactly identifies the dynamical stability boundary ($\omega_0^2 = 0$)**

Impact: Validates the static method for rigorous stability mapping

Efficiency: Static method (~1 hour) vs. Dynamic method (~1 week)

Numerical Validation: Eigenfrequency vs. Critical Curve

Test Case: Bosonic DM ($B_4 = 0.1$) + Holographic NM.

Static Method

- Compute normalized cross product:

$$\mathcal{C}_{M,N_I} = \hat{u}_{\nabla M} \times \hat{u}_{\nabla N_I} \equiv \frac{\nabla M}{|\nabla M|} \times \frac{\nabla N_I}{|\nabla N_I|}$$

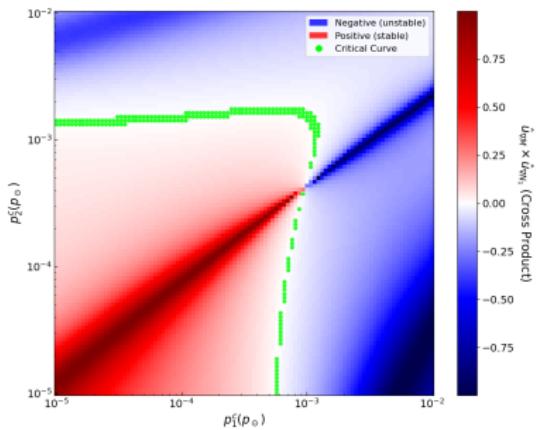


Figure: Static method result

Dynamic Method

- Distinguish the sign of squared fundamental frequency ω_0^2

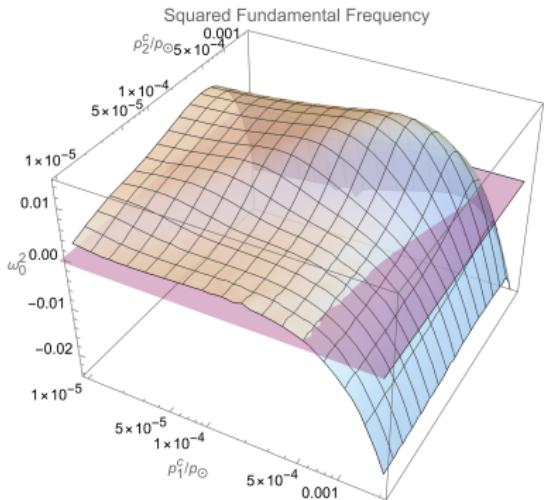


Figure: Dynamic method result

Numerical Validation: Eigenfrequency vs. Critical Curve

Static Method

- Dividing Line between Pink and Green:
 $|\mathcal{C}| \rightarrow 0 = \text{critical curve}$

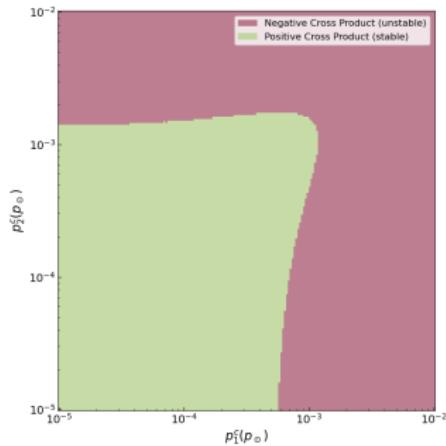


Figure: Static method result

Dynamic Method

- Black Contour:
 $\omega_0^2 \rightarrow 0 = \text{stability marginal}$

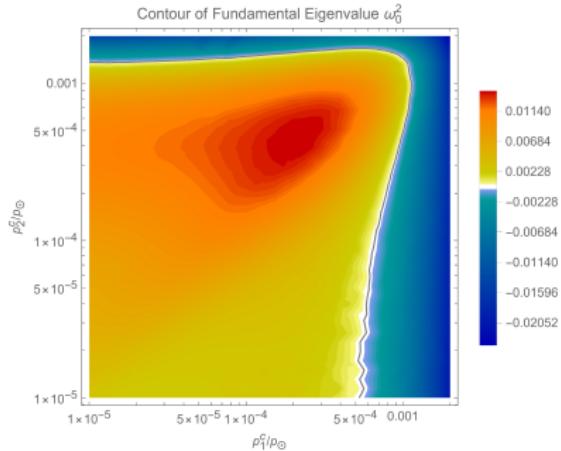
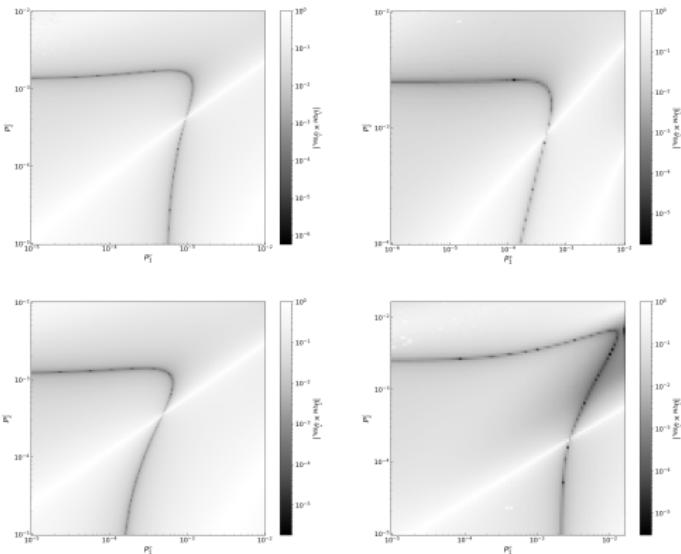


Figure: Dynamic method result

Result: Perfect overlap confirms equivalence!

EoS Combinations Tested:

- 1 Holographic NM + Bosonic DM
- 2 SLy4 (NM) + Bosonic DM
- 3 Holographic NM + Fermionic DM
- 4 SLy4 (NM) + Fermionic DM



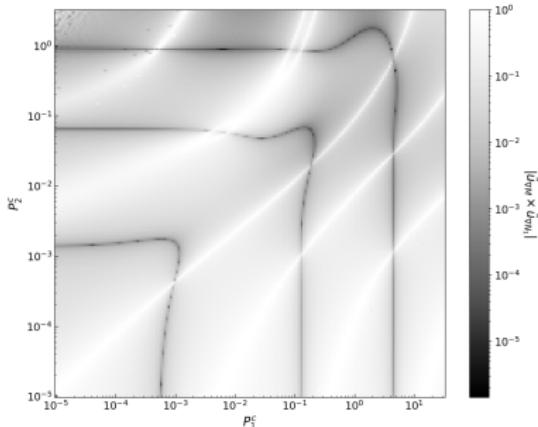
Key Findings:

- The shape of the stability boundary is highly sensitive to the EoS combination and its parameters.
- Regions exist where both central pressures exceed their single-fluid critical values, yet the coupled system remains stable. Gravitational coupling enables new stable phases.

Does the critical curve only mark the vanishing of the fundamental mode?

Extended Parameter Scan:

Reveals **multiple nested critical curves**



Interpretation:

- Innermost curve: $\omega_0^2 = 0$ (fundamental mode becomes unstable)
- Outer curves: $\omega_1^2 = 0, \omega_2^2 = 0, \dots$ (higher radial modes become unstable)
- Moving outward across each curve **gains one unstable mode**

white lines?

Figure: Multiple critical curves for higher-order modes

The Invalid BTM Criterion

Single-Fluid Case

- BTM criterion: M - R curve extrema \rightarrow stability change.

Multi-Fluid Mixed Stars

- Last stable point \neq maximum mass point
 \dashrightarrow **BTM breaks down.**

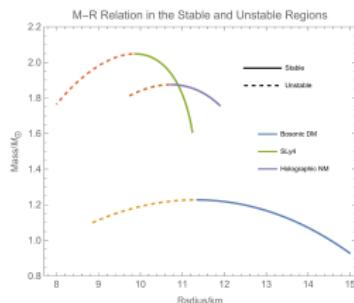


Figure: M - R relation for single fluid

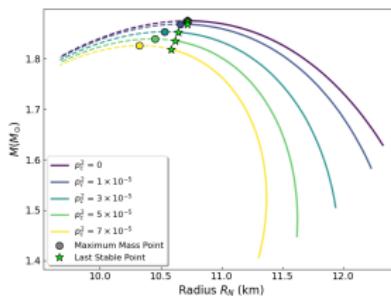


Figure: M - R_N curve: fixed p_1^c varying p_2^c

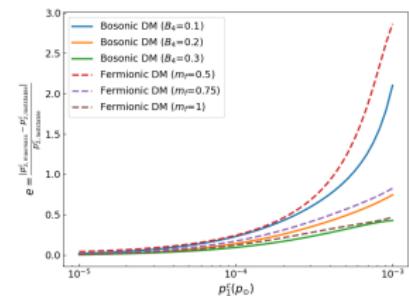


Figure: Relative separation: $p_{\text{last-stable}}$ vs. $p_{\text{max-mass}}$ as function of DM properties.

Resolving Degeneracies

The 3D Topological View

Problem: degeneracy in M - R diagram.

Multiple $(p_{\text{DM}}^c, p_{\text{NM}}^c)$ can map to the same M - R region.

Solution: Lift to 3D Space

The stable region in p_1^c, p_2^c space maps to a **2D surface** in M, R_t, p_I^c space.

Key Result & Benefit

The stable group unfolds into a **non-overlapping 2D surface**.

Clearly separates distinct solution branches.

Can identify potential “Twin Stars” (same M, R , different interior).

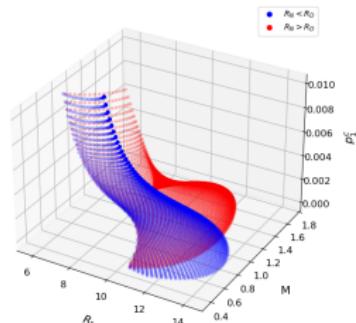


Figure: 3D surface: M - R_t - p_1^c (DM)

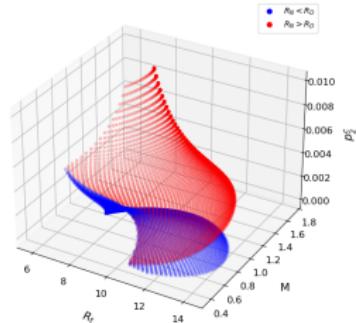


Figure: 3D surface: M - R_t - p_2^c (NM)

Red: $R_N > R_D$, Blue: $R_N < R_D$

2D Projections

Stable Group and Twin Stars

Mapping the stable region in p_1^c - p_2^c space onto the M - R plane yields **Stable Group**:

$$\mathcal{I}_{\text{stable}} = \{(M, R) \mid \exists \text{ stable } (p_{\text{DM}}^c, p_{\text{NM}}^c)\}$$

Gravitational Wave (GW) observations

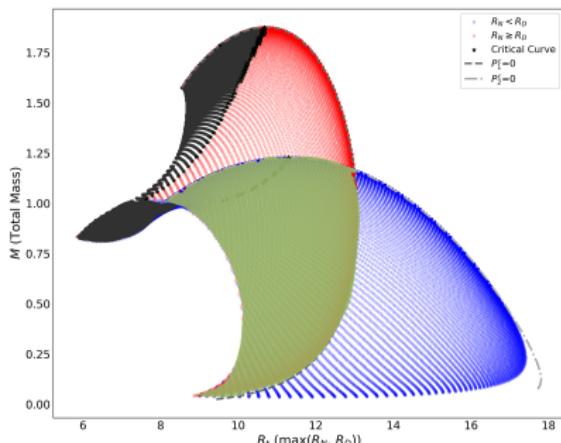


Figure: Stable group in M - R_t plane

Electromagnetic (EM) observations

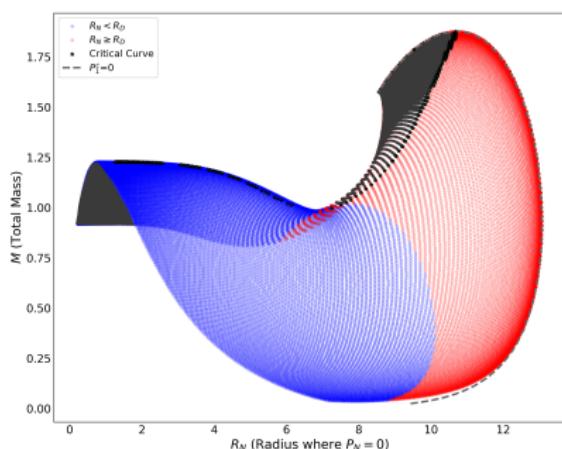


Figure: Stable group in M - R_N plane

Red points: $R_N > R_D$ Blue points: $R_N < R_D$

Twin Stars: Overlapping red and blue regions

Astronomical observation

Covering NS, Mass Gaps & Massive Dark Objects

Parameter combinations	$M_{\max} (M_{\odot})$	R_N (km)	R_D (km)	M/R_N	M/R_D	$p_2^c (p_{\odot})$
B=0.0012, ratio=0.1	100.98	27.200	870.02	3.71	0.116	1.0481×10^{-6}
B=0.0022, ratio=0.1	55.340	15.254	495.75	3.63	0.112	3.5565×10^{-6}
B=0.0012, ratio=0.9	100.97	44.668	878.50	2.26	0.115	1.0000×10^{-7}
B=0.0022, ratio=0.9	55.434	29.046	494.51	1.91	0.112	3.3932×10^{-7}

Note: $\text{ratio} \equiv p_{\text{DM}}^c / p_{\text{NM}}^c$, the central pressure ratio of DM and NM.

Prediction prospects

Varying DM EoS and mixture ratio allows the **stable group** to span a wide M - R_N space:

Normal NS
(e.g., NICER targets)

Mass-Gap Objects
($3-5M_{\odot}$, $50-100M_{\odot}$)

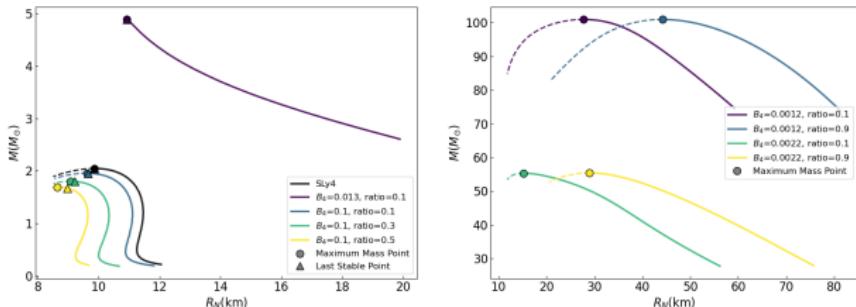


Figure: Prediction prospects for mixed star models displayed through the M - R plane.

The results also show the situations of **Massive Dark Objects** with the observable radius of conventional compact stars accompanied by a large dark halo.

Summary & Outlook

Stability of DM-Admixed Neutron Stars

Core Contributions

- **Equivalence Proven:** Rigorously established the equivalence between the dynamic ($\omega_0^2 = 0$) and static ($\nabla M \parallel \nabla N_I$) stability criteria.
- **Stability Mapped:** Conducted comprehensive stability analysis for diverse EoS combinations (SLy4, Holographic NM, Fermionic/Bosonic DM).
- **Astrophysical Framework:** Projected stable configurations to reveal “**Stable Groups**” on the M - R plane, identifying potential “**Twin Stars**”.
- **Predictive Power:** The model can explain regular NS, mass-gap events ($3 - 5M_{\odot}$, $50 - 100M_{\odot}$), and predict massive dark objects.

Future Outlook

- **Theory:** Extend framework to more sophisticated DM (e.g., self-interacting fermionic DM, axion-like particles) and include rotation/magnetic fields.
- **Synergy:** Our methodology provides a reference/tool for precision multi-messenger astronomy to jointly constrain the NS EoS and DM properties.

Thank You!

Questions & Discussion

kilar@shu.edu.cn

Shanghai University

Department of Physics, Shanghai University