

Gravitational charges and radiation in asymptotically locally de Sitter spacetimes

Aaron Poole

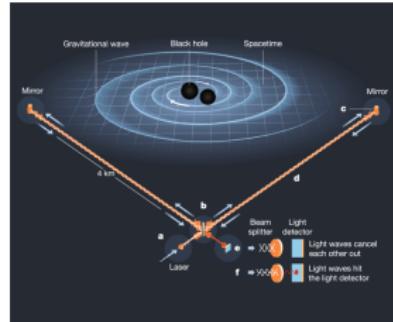
Department of Physics and Research Institute of Basic Science, Kyung Hee University,
Korea

Based on [Phys.Rev.D 106 (2022) 6, L061901, arXiv: 2112.14210], [arXiv: 2512.14243]
with Kostas Skenderis and Marika Taylor

Shanghai-APCTP-Sogang-GIST workshop on Gravity, Astroparticle,
and Cosmology
2025/12/28

Introduction

- New era of **gravitational wave astronomy** [LIGO '15]
- We want to understand GWs using the mathematics of **spacetime charges** [Pirani '57]
- Asymptotically flat spacetimes [Trautman '58, BMS '62, Penrose '65] possess a positive, monotonically decreasing **Bondi mass**



$$\partial_u \mathcal{M}_B = -\frac{1}{32\pi} \int_{S_\infty^2} N_{AB} N^{AB} \leq 0$$

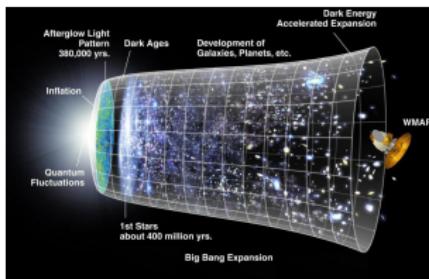
- More generally, **diffeomorphism invariance** \implies charges must be quantities defined at spacetime boundaries
- Need to deal with divergences due to **∞ -volume** of spacetime

Background & motivation

- In **asymptotically flat spacetime** one defines charges relative to flat spacetime, including fluxes due to gravitational waves
[Arnowitt-Deser-Misner '59, Bondi-Metzner-Van der Burg '62, Sachs '62]
- In **asymptotically (locally) AdS** spacetimes, holographic renormalisation [de Haro-Skenderis-Solodukhin '00] unambiguously treats divergences [Papadimitriou-Skenderis '04, '05]

This talk: focus on **asymptotically (locally) de Sitter** spacetimes [Anninos et. al '10, Ashtekar et. al '15-'19, Hoque et al. '15-'25, Chruściel et. al '16, '20, Compère-Fiorucci-Ruzziconi '19, '20, Fernández-Senovilla '19-'24, Lewandowski et al. '20-'24, Bonga-Bunster-Perez '23]

- **Subtle:** No global timelike Killing vector, aformentioned divergences
- **Important:** Inflation, GWs in cosmology

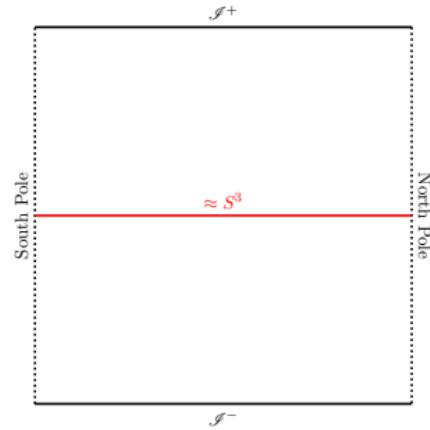


Field equations and causal structure

- Vacuum Einstein equations in the presence of a **positive** cosmological constant:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0, \quad \Lambda = \frac{3}{\ell^2} > 0$$

- Study the **asymptotic** structure using **conformal compactification**
[Penrose '63]
- $\bar{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$, $\Omega|_{\mathcal{J}} = 0$, $\bar{n}_\mu = \partial_\mu \Omega|_{\mathcal{J}} \neq 0$
- In particular:
 $\bar{n}_\mu \bar{n}^\mu|_{\mathcal{J}} = -\ell^{-2} \implies \mathcal{J}$ is **spacelike**
- The conformal boundary is split into two disjoint components $\mathcal{J} = \mathcal{J}^+ \sqcup \mathcal{J}^-$



Asymptotically locally de Sitter (AldS) spacetimes

All conformally compact Einstein spacetimes ($\Lambda > 0$) can be written in a neighbourhood of \mathcal{I}^\pm in the following form [Starobinsky '83]

$$ds^2 = \frac{3}{\Lambda} \left[-\frac{d\rho_\pm^2}{\rho_\pm^2} + \gamma_{ij}^\pm dx^i dx^j \right],$$

where

$$\gamma_{ij}^\pm = \frac{1}{\rho_\pm^2} (g_{(0)ij}^\pm + \rho^2 g_{(2)ij}^\pm + \rho^3 g_{(3)ij}^\pm + \mathcal{O}(\rho^4)).$$

- \mathcal{I}^\pm is located at $\rho_\pm = 0$
- $g_{(0)ij}^\pm$ is a representative of the **conformal class** $[g_{(0)}^\pm]$ at \mathcal{I}^\pm
- If $\mathcal{I}^\pm \approx \{S^3, \mathbb{R}^3, \mathbb{R} \times S^2\}$ and $g_{(0)ij}^\pm$ is conformally flat the the spacetime is **asymptotically dS** at \mathcal{I}^\pm , otherwise it is merely **asymptotically locally dS** at \mathcal{I}^\pm .
- $g_{(3)ij}^\pm = -\frac{2\kappa^2}{3\ell} T_{ij}^\pm$ where T_{ij}^\pm is (the analytic continuation of) the **energy-momentum tensor** ($T_i^{\pm i} = 0, \nabla_{(0)}^\pm{}^i T_{ij}^\pm = 0$) [Skenderis '02].

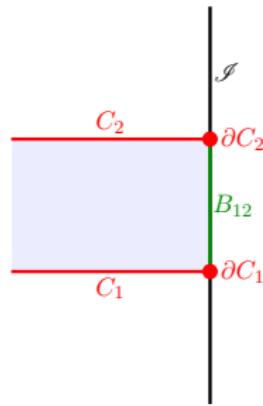
Charges in asymptotically locally anti-de Sitter ($\Lambda < 0$)

Use the **covariant phase space formalism** [Wald et al. '90-'99] (alternatively Noether's 1st or 2nd theorem) to construct conserved charges in AlAdS spacetimes [Papadimitriou-Skenderis '05]

$$H_{\tilde{\xi}} = \int_{\partial C} d\tilde{\sigma}_i \tilde{T}_j^i \tilde{\xi}_{(0)}^j$$

- Slices C are **partial Cauchy surfaces**
- Asymptotic symmetries
 $\delta_{\tilde{\xi}}[\tilde{g}_{(0)}] = 0 \implies \tilde{\xi}$ **asymptotic conformal Killing vectors**:
 $\tilde{\nabla}_{(i}^{(0)} \tilde{\xi}_{j)}^{(0)} = \frac{1}{3} \tilde{g}_{ij}^{(0)} \tilde{\nabla} \cdot \tilde{\xi}^{(0)}$

Charges obey a conservation law:



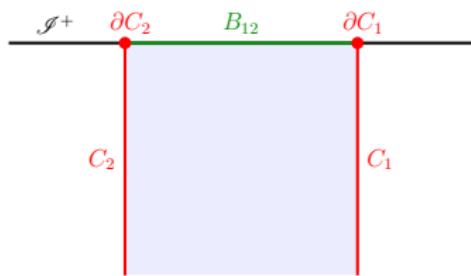
$$H_{\xi}|_{C_2} = H_{\xi}|_{C_1}$$

dS charges at \mathcal{I}^+

We impose the following boundary conditions at \mathcal{I}^+ (drop \pm script)

$$\delta g_{(0)ij} = 2(\sigma g_{(0)ij} + \nabla_{(0)(i}\zeta_{j)})$$

variational problem is well-posed ($\delta S_{\text{ren}} = 0 \Leftrightarrow \mathbf{E} = 0$)



- Asymptotic symmetries are vectors ξ which asymptote to boundary diffeomorphisms $\xi_{(0)}^i$
- Slices \mathcal{C} are timelike hypersurfaces

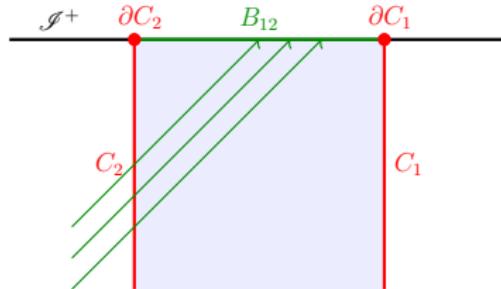
When $\xi_{(0)}$ a conformal Killing vector (CKV): $\nabla_{(i}^{(0)} \xi_{j)}^{(0)} = \frac{1}{3} g_{(0)ij} \nabla \cdot \xi^{(0)}$

$$H_\xi|_{\mathcal{C}} = \int_{\partial\mathcal{C}} d\sigma_i T_j^i \xi_{(0)}^j = Q_\xi(\mathcal{C})$$

- Conservation of charges: $H_\xi|_{\mathcal{C}_2} - H_\xi|_{\mathcal{C}_1} = 0$ - spatial conservation!

dS Fluxes at \mathcal{I}^+

$g_{ij}^{(0)}$ has no CKVs $\implies \nexists H_\xi$. Need modification [Wald-Zoupan '99]



- Same expression for **modified charge**, \mathcal{H}_ξ , now $\xi_{(0)} \in \text{Diff}(\mathcal{I}^+)$

$$\mathcal{H}_\xi|_{\textcolor{red}{C}} = \int_{\partial \textcolor{red}{C}} d\sigma_i T_j^i \xi_{(0)}^j = Q_\xi^+(\textcolor{red}{C})$$

- Flux through the spacelike hypersurface $B_{12} \subset \mathcal{I}^+$

$$\mathcal{H}_\xi|_{\textcolor{red}{C}_2} - \mathcal{H}_\xi|_{\textcolor{red}{C}_1} = - \int_{B_{12}} \mathbf{F}_{\xi_{(0)}} = \frac{1}{2} \int_{B_{12}} \sqrt{g^{(0)}} T^{ij} \mathcal{L}_{\xi_{(0)}} g_{ij}^{(0)} d^3x$$

Piecewise CKVs interpolate the two cases discussed.

Temporally conserved quantities [AP-Skenderis-Taylor '21, '25]

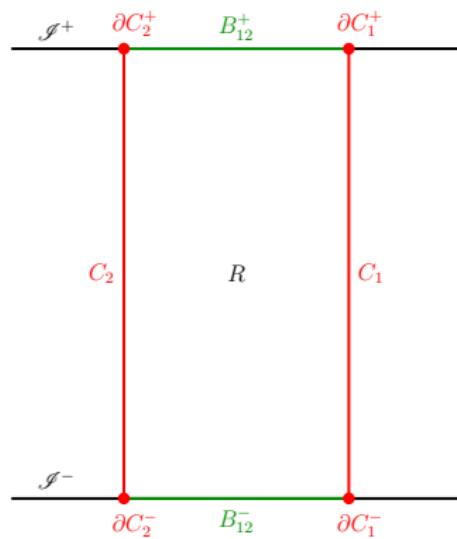
- Locally, analytic continuation allows us to use techniques from AdS
- Globally, AdS are different. We need to include the **past contribution** of the timelike slice \mathcal{C}

A first simple application is to take $\partial\mathcal{C}^- \subset \mathcal{I}^-$ and consider ξ an asymptotic conformal Killing vector of both \mathcal{I}^\pm

- $H_\xi|_{\mathcal{C}} = Q_\xi^+(\mathcal{C}) - Q_\xi^-(\mathcal{C})$
- Spatially conserved charges:
 $H_\xi|_{\mathcal{C}_2} = H_\xi|_{\mathcal{C}_1}$

$$\Delta Q_\xi^+(\mathcal{C}_2, \mathcal{C}_1) = \Delta Q_\xi^-(\mathcal{C}_2, \mathcal{C}_1)$$

- ΔQ_ξ provides a notion of a **temporally conserved quantity**
- In fact: $\Delta Q_\xi^+ = \Delta Q_\xi^- = 0$
(spatial conservation at **each end**)



Two-ended fluxes

Criterion: An AdS spacetime may have **non-trivial gravitational radiation** at \mathcal{I}^\pm when \nexists a solution to $\nabla_{(0)(i}^\pm \xi_{(0)j)}^\pm = \frac{1}{3} g_{(0)ij}^\pm \nabla_{(0)}^\pm \cdot \xi_{(0)}^\pm$

- Fluxes at \mathcal{I}^+ [Anninos et al. '11,

Compère et al. '20,

Kolanowski-Lewandowski '21]

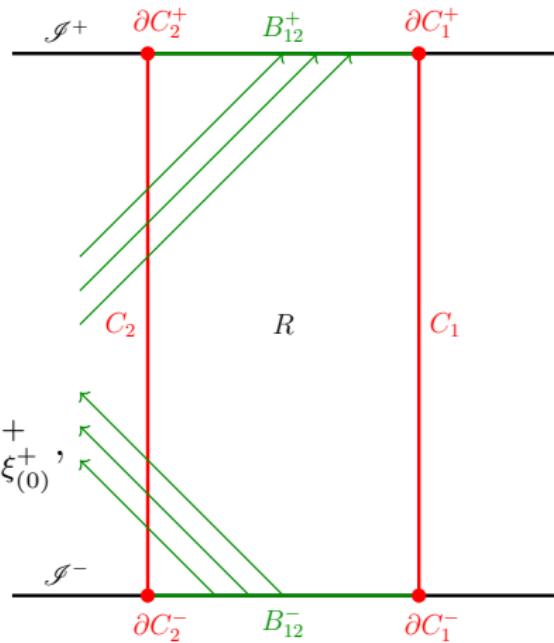
previously established

- Flux through the (two component) spacelike hypersurface B_{12}

$$\mathcal{H}_\xi |C_2 - \mathcal{H}_\xi |C_1 = \int_{B_{12}^-} \mathbf{F}_{\xi_{(0)}^-}^- - \int_{B_{12}^+} \mathbf{F}_{\xi_{(0)}^+}^+,$$

where

$$\mathbf{F}_{\xi_{(0)}^\pm}^\pm = -T_{\pm}^{ij} \nabla_{(0)(i}^\pm \xi_{(0)j)}^\pm \epsilon_{(0)}^\pm$$



Asymptotically locally dS example - Robinson-Trautman

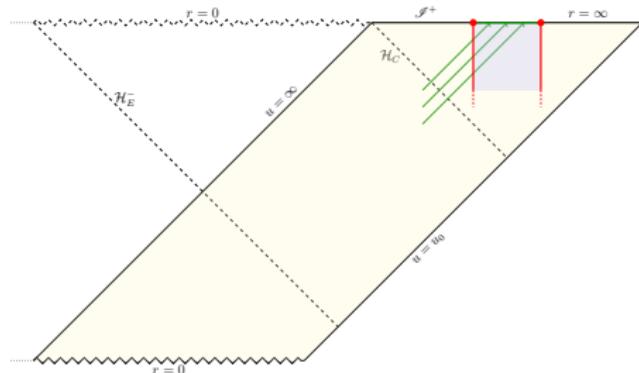
- [Robinson-Trautman '60] metrics admit a geodesic null congruence with zero twist and shear and non-vanishing divergence
- Recent interest [de Freitas-Reall '14, Bakas-Skenderis '14, Skenderis-Withers '16, Adami et al. '24, Arenas et al. '25] (hydro expansion, AdS grav. waves)

$$ds^2 = - \left(r \partial_u \Phi - \Delta \Phi - \frac{2m}{r} - \frac{\Lambda}{3} r^2 \right) du^2 - 2dudr + 2r^2 e^{\Phi} dz d\bar{z},$$

where $\Delta = e^{-\Phi} \partial_z \partial_{\bar{z}} = \frac{1}{2} \nabla^2$.

- Einstein equations reduce to the **RT** equation:

$$3m \partial_u \Phi + \Delta \Delta \Phi = 0$$



- Insensitive of Λ ! Suggests that RTdS has **Bondi mass loss** as in AF case [Chrusciel '91]

RTdS monotonic charges

- Asymptotic charges need Starobinsky/Fefferman-Graham expansion
[Bakas-Skenderis '14] ($\hat{\Phi} = \Phi|_{\mathcal{J}^+}$)

$$g_{(0)} = dt^2 + \frac{6}{\Lambda} e^{\hat{\Phi}} dz d\bar{z} \implies [g_{(0)}] \neq [\delta_{ij}]$$

- Generically no conformal Killing $\xi_{(0)}$, need to define \mathcal{H}_ξ
- In particular, choosing

$$\xi_{(0)} = e^{\frac{1}{2}(\hat{\Phi} - \hat{\Phi}_0)} \partial_t \implies \mathcal{H}_\xi = \frac{2m}{\kappa^2} \int_{\partial C} e^{\frac{3}{2}(\hat{\Phi} - \hat{\Phi}_0)} d\Omega = \mathcal{M}_B$$

gives the “Bondi mass”, \mathcal{M}_B , with negative flux:

$$\mathcal{M}_B|_{\partial C_2} - \mathcal{M}_B|_{\partial C_1} \leq 0$$

- Another monotonic charge is the Calabi functional [Calabi '82]:

$$\xi_{(0)} = (\hat{\Delta} \hat{\Phi})^2 \partial_t \implies \mathcal{H}_\xi = \frac{m}{2\kappa^2} \int_{\partial C} (R_2)^2 d\Omega = \mathcal{C}, \quad \mathcal{C}|_{\partial C_2} - \mathcal{C}|_{\partial C_1} \leq 0$$

see e.g. [Chrusciel '91] for nice proofs of the monotonicity properties

RTdS conserved charges

Despite not admitting **conformal Killing vectors** $\xi_{(0)}$, RTdS spacetimes do possess several conserved charges:

- **Cross-section area:** $\xi_{(0)} = \partial_t \implies \mathcal{H}_\xi = \frac{2m}{\kappa^2} \int_{\partial C} d\Omega = \frac{2m}{\kappa^2} A_2$
- **Euler characteristic:** $\xi_{(0)} = -\hat{\Delta} \hat{\Phi} \partial_t \implies \mathcal{H}_\xi = \frac{2m}{\kappa^2} \int_{\partial C} R_2 d\Omega = \frac{m}{G} \chi$
- **Lorentz charges:** $\xi_{(0)} = g(z) \partial_z + h(\bar{z}) \partial_{\bar{z}} \implies H_\xi = 0$ (vanishing “angular momentum” type charges)

Radially invariant charges not associated with CKVs satisfy

$$\mathbf{F}_\xi \neq 0, \quad \int_{B_{12}} \mathbf{F}_\xi = 0.$$

All of the **charges above** are conserved by virtue of

$$\iota_{\partial_t} \mathbf{F}_\xi = d_2 \mathbf{a}, \tag{1}$$

i.e. the flux-form is **exact over the compact directions**. Finding vectors which solve (1) appears to be a strategy to construct such charges

Conclusions and Future directions

Conclusions:

- Computed Hamiltonians in AdS spacetimes associated with **timelike, two-ended** hypersurfaces C
- For a spacetime admitting (conformal) boundary isometries, the differences between charges ΔQ_ξ^\pm are **temporally conserved quantities**
- In the absence of (conformal) boundary isometries the charges admit a **flux due to gravitational radiation** e.g. **Robinson-Trautman-dS**

Future directions:

- Want a physically motivated example with **interior flux** - bulk gravitational waves
- Need to fix the **ambiguities** in the correction to the charges
- Past ends of particular interest: **Cross sections of \mathcal{H}_{Cos}** , connection with entropy **[Wald '93]**, near horizon symmetries **[Grumiller et al. '19, Donnay-Giribet '19]** + extension to the **static patch** **[Ashtekar-Bahrami '19]**