

Type IIB Supergravity Action Holography Beyond the $AdS_5 \times S_5$ Solution

Soumya Adhikari

Sogang University
Center of Quantum SpaceTime (CQUeST)

Based on a work with Junho Hong, Chanyoung Joung, and Geum Lee
Manuscript under preparation

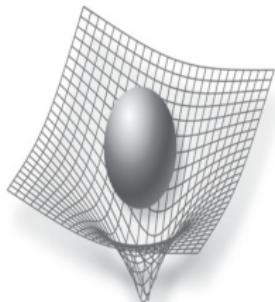
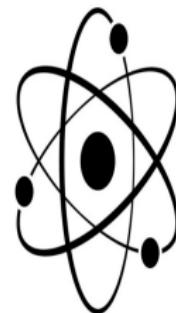
December 28, 2025

Outline of This Talk

- ① Introduction
- ② Motivation — Why This Problem Matters.
- ③ Type IIB Supergravity.
- ④ Pasti–Sorokin–Tonin (PST) Action.
- ⑤ Duality Symmetric Formalism.
- ⑥ On-Shell Action on $\text{AdS}_5 \times S^5$ and Holography
- ⑦ Lunin–Maldacena Solution: S^5 -deformation and non-trivial 2-forms.
- ⑧ Comment on $\text{AdS}_4 \times M_6$ and $\text{AdS}_6 \times M_4$
- ⑨ Discussion

Introduction

- The two main pillars of theoretical physics :



- Over the last century, the frontier of physics has been dedicated to unifying these domains: **Quest for quantum gravity**

- Superstring theory is one of the potential candidates in the pursuit of quantum gravity.
- The fundamental building blocks of this theory are strings.
- Their vibrational modes correspond to different particles.
- The graviton, the gravity mediator, and its supersymmetric partner, the gravitino, are examples of massless particles in the superstring theory spectrum.

- The spectrum also features a tower of massive Planck-scale particles.
- However, these massive particles are unlikely to be detected within the near future.
- The low-energy limit: An effective field theory: **Supergravity**
- In this talk, we will focus exclusively on **Type IIB** supergravity.

Motivation — Why This Problem Matters

Type IIB String Theory

Type IIB Supergravity In 10D

$\mathcal{N} = 4$ Supergravity In 5D dual to $\mathcal{N} = 4$ SYM

Action $^{10D}_{AdS_5 \times S_5} = 0$; Action $^{5D}_{AdS_5} \neq 0 =$ Holography result.

Improved Action¹

Contains an additional 5-form dependent “topological” term.

Now, the 10D On-Shell matches with 5D
and become consistent with holography

¹[hep-th/2206.14522](https://arxiv.org/abs/2206.14522) , S.A. Kurlyand, A.A. Tseytlin

Motivation — Why This Problem Matters

- The original work did not consider a general treatment for the problem.
- We seek an improved action that resolves this mismatch for **more general AdS backgrounds**.
- It is crucial and indispensable that the holography must work for backgrounds beyond $\text{AdS}_5 \times S_5$.

Core Idea

Add a suitable **topological term** to the PST action to restore agreement between 10D and lower-dimensional supergravity action echoing the holographic descriptions.

Type IIB Supergravity

- **Type IIB theory bosonic field content:** $(g_{\mu\nu}, B_2, \phi, C_0, C_2, C_4)$

$$H_3 = dB_2, F_{n+1} = dC_n, \tilde{F}_3 = F_3 - C_0 H_3,$$
$$\tilde{F}_5 = F_5 - \frac{1}{2} C_2 \wedge H_3 + \frac{1}{2} B_2 \wedge F_3.$$

The ‘pseudo’ Euclidean Type IIB action for the bosonic sector:

$$S_{\text{IIB}} = -\frac{1}{2\kappa^2} \int \left(*R - \frac{1}{2} d\phi \wedge *d\phi - \frac{1}{2} e^{-\phi} H_3 \wedge *H_3 \right)$$
$$+ \frac{1}{4\kappa^2} \int \left(e^{2\phi} F_1 \wedge *F_1 + e^\phi \tilde{F}_3 \wedge *\tilde{F}_3 + \frac{1}{2} \tilde{F}_5 \wedge *\tilde{F}_5 \right)$$
$$+ \frac{i}{4\kappa^2} \int C_4 \wedge H_3 \wedge F_3. \tag{1}$$

Type IIB Supergravity

- The **self-duality** of 5-form field strength \tilde{F}_5 : $\tilde{F}_5 = -i * \tilde{F}_5$
 - ① Supersymmetry closure and Bosonic d.o.f.=Fermionic d.o.f..
 - ② String origin.
- The self-duality **cannot** be derived from a manifestly **Lorentz-covariant** action.
- The self-duality has to be **imposed 'by hand'** in the field equations.

Pasti–Sorokin–Tonin (PST) Action

- In the PST formulation, the self-duality condition of the five-form field strength is obtained directly from an action principle.
- This is achieved by introducing an auxiliary scalar field $a(x)$.
- An additional gauge invariance is imposed.
- **Pasti–Sorokin–Tonin (PST)² Action:**

$$\begin{aligned} S_{\text{IIB}}^{(\text{PST})} = & -\frac{1}{2\kappa^2} \int \left(*R - \frac{1}{2}d\phi \wedge *d\phi - \frac{1}{2}e^{-\phi} H_3 \wedge *H_3 \right) \\ & + \frac{1}{4\kappa^2} \int \left(e^{2\phi} F_1 \wedge *F_1 + e^\phi \tilde{F}_3 \wedge *\tilde{F}_3 + \frac{1}{2} \tilde{F}_5 \wedge *\tilde{F}_5 \right. \\ & \left. + \frac{1}{2} i_\nu \mathcal{F}_5 \wedge *i_\nu \mathcal{F}_5 \right) + \frac{i}{4\kappa^2} \int C_4 \wedge H_3 \wedge F_3, \end{aligned} \quad (2)$$

Where, $\mathcal{F}_5 \equiv \tilde{F}_5 + i * \tilde{F}_5$, $v_\mu \equiv \frac{1}{\sqrt{-\partial^\mu a \partial_\mu a}} \partial_\mu a$.

²hep-th/9611100 , P. Pasti, D. Sorokin, M. Tonin

- Gauge invariance:
 $\delta_\ell a = 0, \delta_\ell C_4 = a\ell_4, (d\ell_4 = 0)$ **Upto a boundary.**
- Using the above gauge invariance, one can derive the self-duality from the equations of motions.

Duality Symmetric Formalism

- ① This formulation has a and $Q_5 = dR_4$ auxiliary fields.
- ② Obtains the self-duality of the combination $\tilde{F}_5 + aQ_5$ without using a gauge invariance.
- ③ For background without boundary, gauge invariance plays the crucial role to give back the old set of fields without any hazards.
- ④ This formulation has the **boundary term**, $F_5 \wedge aQ_5$, from the beginning
- ⑤ **No straightforward way** to partition the physical self-dual field strength.
- ⑥ From the equations of motions, one cannot fix F and aQ separately.
- ⑦ F and aQ come in a similar fashion in the action except $F \wedge aQ$.
- ⑧ There is no prescription to partition the self-dual five-form field strength for cases beyond $AdS_5 \times X_5$.

On-Shell Action on $\text{AdS}_5 \times S^5$ and Holography

- The $\text{EAdS}_5 \times S^5$ vacuum background:

$$ds_{10}^2 = (ds_{\text{EAdS}_5}^2 + ds_{S^5}^2), \tilde{F}_5 = F_5 = -4(i\epsilon_5 + *\epsilon_5), \\ C_0, \phi = \text{const}, B_2 = C_2 = 0, \quad (3)$$

- Euclidean PST-IIB action $\xrightarrow{\text{EAdS}_5 \times S^5 \text{ Field configuration}} 0$
- Contradiction with Low-Dimensional Supergravity:

$$S_5 = -\frac{1}{2\kappa_5^2} \int d^5x \sqrt{g} \left(R_5 + 12L^{-2} + \dots \right) \quad (4)$$

- Evaluating this action on the AdS_5 vacuum solution gives a non-zero result.

$$S_5 = \frac{8}{2\kappa_5^2} \text{Vol}(\text{AdS}_5) \quad (5)$$

- Gives correct holography result.

AdS/CFT Correspondence

$$\text{Type IIB string theory} \leftrightarrow \mathcal{N} = 4 \text{ } SU(N) \text{ SYM}$$
$$\text{on } AdS_5 \times S^5 \qquad \qquad \text{on } \partial AdS_5$$

- The AdS/CFT Dictionary: $Z_{\text{grav}}[g^{(0)}] = Z_{\text{CFT}}[g^{(0)}]$,
 - Z_{grav} is the **gravitational partition function**,
 - Z_{CFT} is the **CFT partition function** on the boundary metric $g^{(0)}$.
- Z_{grav} (Classical (supergravity) limit) $\sim e^{-S_{\text{on-shell}}}$.
- The free-energy: $F_{\text{CFT}} = -\ln Z_{\text{CFT}} = S_{\text{on-shell}}^{(\text{ren})}$.
- The 10D on-shell action on $AdS_5 \times S_5$ is in contradiction with the AdS/CFT result.
- The 10d action, especially its on-shell value, should arise from a well-defined quantum string path integral, making the 10d approach essential for going beyond leading order in α' within AdS/CFT.

Topological Term As An Improvement To PST Action

- A natural way to resolve this problem is to assume that the 10d action is missing some “boundary term” that restores the equivalence of its on-shell value with that of the 5d action.
- - The boundary term is also required for gauge invariance in the PST formulation on $M_5 \times X_5$ backgrounds.³
 - Construct a self-dual (electric + magnetic) IIB action that includes the boundary term from the start.⁴
 - Derive and justify the same boundary term using Sen’s string field theory approach to IIB supergravity.⁵

³[hep-th/2206.14522](https://arxiv.org/abs/hep-th/2206.14522) , S.A. Kurlyand, A.A. Tseytlin

⁴[hep-th/2207.00626](https://arxiv.org/abs/hep-th/2207.00626) , K. Mkrtchyan, F. Valach

⁵[hep-th/2211.02345](https://arxiv.org/abs/hep-th/2211.02345) , S. Chakrabarti, D. Gupta, A. Manna

$M_5 \times X_5$ Background

$M_{10} = M_5 \times X_5$, where X_5 is compact without boundary and M_5 may be non-compact. The 4-form potential and field strength decompose as:

$$C_4 = C_{4M} \oplus C_{4X}, \quad F_5 = F_{5M} \oplus F_{5X}, \quad \delta_\xi C_4 = \delta_\xi C_{4M} \oplus \delta_\xi C_{4X}. \quad (6)$$

The variation of the Euclidean PST-IIB action:

$$\begin{aligned} \delta_\ell S_{\text{IIB}}^{(\text{PST})} &= \frac{i}{4\kappa^2} \int d(\tilde{F}_5 \wedge \delta_\ell C_4) = -\frac{i}{4\kappa^2} \int F_5 \wedge d\delta_\ell C_4 \\ &= \frac{i}{4\kappa^2} \int_{\partial M^5} a\ell_4 \int_{X^5} F_{5X}. \end{aligned} \quad (7)$$

Gauge invariance is restored by adding the topological term

$$S_{\text{top}} = -\frac{i}{4\kappa^2} \int F_{5M} \wedge F_{5X}. \quad (8)$$

whose variation cancels $\delta_\xi S_{\text{PST}}$ and which reduces to a boundary integral, leaving the equations of motion unchanged.

We evaluate the on-shell action of the $\text{EAdS}_5 \times S^5$ vacuum (3) using the improved action to confirm that it yields the value expected from holography. Substituting the field configuration (3) into the improved Euclidean PST-IIB action $S_{\text{IIB}}^{(\text{PST}+)}$, we only need to calculate the non-vanishing topological term:

$$\begin{aligned}
 S_{\text{top}} &= -\frac{i}{4\kappa_{10D}^2} \int F_{5\text{EAdS}_5} \wedge F_{5S^5} \\
 &= \frac{4}{\kappa_{10D}^2} \int_{\text{EAdS}_5} \epsilon_5 \int_{S^5} * \epsilon_5 = \frac{4}{\kappa_{10D}^2} \text{vol}(\text{EAdS}_5) \text{vol}(S^5)
 \end{aligned} \tag{9}$$

- This approach has two limitations.
 - ① The improvement term is said to be **background dependent** even in $M^5 \times X^5$ types of solutions. We do not know what the improvements should be for solutions with non-trivial 2-forms.
 - ② There **is no straightforward** generalizations to discuss beyond $M^5 \times X^5$.

Topological Term: $AdS_n \times X^{10-n}$ For $n \leq 5$

$$\delta S_{\text{IIB}}^{(\text{PST})} = \frac{i}{4\kappa_{10D}^2} \int \left[d(F_5 \wedge \delta C_4) + \textcolor{blue}{d(X_5 \wedge \delta C_4)} \right] \quad (10)$$

We add topological terms to the PST action:

$$S_{\text{top}} = -\frac{i}{4\kappa_{10D}^2} \int \left(S_{\text{top}}^{(C_4)} + \textcolor{blue}{d(X_5 \wedge C_4)} \right) \quad (11)$$

Assumption:

- The k -th de-Rham Cohomology groups for the internal manifold: $H^5 \neq 0$ but others are zero.

We write: $F_5 = F_{5E} + F_{5NE}(X^{(10-n)})$ & $\delta F_5 = A$ a globally exact form.

We **propose** the following topological term:

$$S_{\text{top}}^{(C_4)} = -\frac{i}{4\kappa_{10D}^2} \int F_{5E} \wedge F_{5NE} \quad (12)$$

The variation of the above cancels the first term in (10).

Key Points:

- Inside F_{5E} we cannot have a global exact form that is a function of the internal manifold.
- For the simple case of $AdS_5 \times X^5$, F_{5E} and F_{5NE} have only contribution from AdS_5 and X^5 , respectively.

However, we need to know:

- **How do we explicitly construct these two parts from the F_5 ?**
- **Does it give correct on-shell action?**

Lunin-Maldacena Solution: S^5 -deformation and non-trivial 2-forms

The Lunin-Maldacena (LM) background ⁶:

$$ds^2 = G^{-1/4} \left[ds_{EAdS_5}^2 + \sum_i (d\mu_i^2 + G\mu_i^2 d\phi_i^2) + 9(\gamma^2 + \sigma^2) G\mu_1^2\mu_2^2\mu_3^2 d\psi^2 \right],$$

$$e^{-\phi} = G^{-1/2} H^{-1}, \quad \chi = \gamma\sigma g_{0,E} H^{-1},$$

$$B_2 = \gamma G w_2 - 12\sigma w_1 \wedge d\psi, \quad C_2 = -\sigma G w_2 - 12\gamma w_1 \wedge d\psi,$$

$$\tilde{F}_5 = -4(i\omega_{EAdS_5} + G d w_1 \wedge d\phi_1 \wedge d\phi_2 \wedge d\phi_3),$$

where

$$G^{-1} = 1 + (\gamma^2 + \sigma^2) g_{0,E}, \quad H = 1 + \sigma^2 g_{0,E}, \quad g_{0,E} = \mu_1^2\mu_2^2 + \mu_2^2\mu_3^2 + \mu_3^2\mu_1^2,$$

$$\begin{aligned} dw_1 &= \mu_1\mu_2\mu_3 *_2 1, \quad w_2 = \mu_1^2\mu_2^2 d\phi_1 \wedge d\phi_2 + \mu_2^2\mu_3^2 d\phi_2 \wedge d\phi_3 \\ &\quad + \mu_3^2\mu_1^2 d\phi_3 \wedge d\phi_1. \end{aligned}$$

⁶[hep-th/2206.14522](https://arxiv.org/abs/2206.14522) , O. Lunin, J. Maldacena

On-Shell Action For LM Solutions

- The PST action for Lunin-Maldacena is not zero but gives the following boundary term.

$$\frac{i}{4\kappa^2} \int F_5 \wedge X_5. \quad (13)$$

- Adding the proposed improvement term:

$$S_{IIB}^{\text{On-Shell}} = -\frac{i}{4\kappa^2} \int F_{5E} \wedge F_{5NE}. \quad (14)$$

- For the Lunin-Maldacena Solution:

$$F_5 = \tilde{F}_5 + \frac{1}{2} C_2 \wedge H_3 - \frac{1}{2} B_2 \wedge F_3 = -4(i\omega_{AdS_5} + dw_1 \wedge d\phi_1 \wedge d\phi_2 \wedge d\phi_3)$$

$$S_{IIB}^{\text{On-Shell}} = \frac{4}{\kappa_{10}^2} \text{Vol}_{EAdS_5} \int_{\tilde{S}_5} \mu_1 \mu_2 \mu_3 d^5 \theta. \quad (15)$$

The deformation parameter does not play any role in the on-shell action for the Lunin-Maldacena solution.

Low-Dim Supergravity Action

We are interested in reducing the gravitational part of the type IIB action on the internal space \tilde{S}^5 , so we write

$$\begin{aligned} S_{10} &= -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{G_{10}} [R_{10} + \dots] \\ S_5 &= -\frac{A}{2\kappa_{10}^2} \int d^5x \sqrt{g_5} [R_5 + 12 + \dots]. \end{aligned} \tag{16}$$

We see that the factor A in equation (16) is given by:

$$A = \int d^5\theta (\mu_1 \mu_2 \mu_3). \tag{17}$$

Going on-shell on $EAdS_5$:

$$S_5^{\text{On-Shell}} = \frac{4A}{2\kappa_{10}^2} \text{Vol}(EAdS_5) \tag{18}$$

Schematic Picture In $\text{AdS}_4 \times S_1 \times S_1 \times M_4$

- We take a simple case of $\text{AdS}_4 \times S_1 \times S_1 \times M_4$ with the following metric ansatz: $ds_{10}^2 = \Delta (ds_4^2 + d\phi^2 + d\psi^2) + d\tilde{s}_4^2$
- For the above case, the determinant of the ten-dimensional vielbein: $e_{10} = \Delta^3 e_4 \tilde{e}_4$
- Low-dimensional on-shell action: $\propto \text{Vol}_{\text{AdS}_4} \int \Delta^2 \tilde{e}_4 d^6 y$.
- Now, we take a simplified ansatz for the self-dual field strength (we take the two-forms to be zero):
 $F_5 = (a(\Delta) e^4 \wedge e^8 + b \tilde{e}^4 \wedge e^9) \equiv F_E + F_M$, where b is a constant.
- The self-duality can be implemented by:
 $* (a(y) e^4 \wedge e^8) = (b \tilde{e}^4 \wedge e^9)$.
- The above gives: $a(y) = \Delta^2 b$.
- The topological term: $\propto F_E \wedge F_M \propto \text{Vol}_{\text{AdS}_4} \int \Delta^2 \tilde{e}_4 d^6 y$.

Comments on $AdS_6 \times M_4$

- The proposal of (12) does not work for $n > 5$, as all closed five-forms will be exact forms globally.
- However, the global exact forms will be tensor product products of AdS_n global exact forms and non-exact forms from the internal manifolds.

We leave this as a future investigation.

Discussion

- We want to test our methods by explicitly working out the S-fold solution of the type IIB background where the 10d metric of the form $EAdS_4 \times S^2 \times S^2 \times \Sigma_2$, $EAdS_4 \times S^2 \times S^2 \times S_1 \times S_1$, and $EAdS_4 \times S^1 \times S^5$.
- Another non-trivial type IIB background of our interest is the $EAdS_6 \times S_2 \times \Sigma_2$ as the 10D solution of the type IIB background.
- How the string field theory motivated approach is related to the approaches discussed here.
- We have a parallel issue with the $EAdS_4 \times S^7$ on-shell action of 11d supergravity, but do not have a good enough resolution unlike the IIB supergravity. ***Work In Progress***

감사합니다
Thank you.