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Dark Matter and WIMPs

« Many evidences of Dark Matter
 Galaxy rotational curve
« CMB
* Lensing effect

« Many candidates
« Neutrino
* Cold Dark Matter (CDM)
« Weakly Interacting Massive Particle (WIMP)
« Weak-type interaction
* no electric charge, no color
« Mass range in GeV-TeV range
« WIMP miracle

« correct relic abundance is obtained at WIMP < gv > = weak scale
« most extensions of SM are proposed independently at that scale.



Detection strategies

Direct detection
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Accelerator

* Direct detection: DM interacts with SM particles (left to right)
* Indirect detection: DM annihilation (top to bottom)
e Accelerator: DM creation (bottom to top)



Direct Detection (DD)

 The signals are WIMP-nucleus recoil events

* Low probability requires high exposure —
» Underground to avoid background T xenon-nT

* Depend on features of targets and experimental set-ups

« Different nuclear targets and background subtraction:
« COSINE, LZ, XENON-nT, ANAIS, DAMA, PandaX-4T, PICO-60 and ect.



Indirect Detection (NT)

« Capture rate in the celestial body

« WIMP scatters off nucleus at distance r inside celestial body
« same interaction probed by DD

» If its outgoing speed v,,; is below the escape velocity v,..(1),
It gets locked into gravitationally bound orbit and keeps scattering
again and again

 Capture process is favored for low (even vanishing) WIMP speeds



Non-Relativistic Effective Theory (NREFT)

« WIMP is slow, so that the recoil events are non-relativistic

* NREFT provides a general and efficient way to characterize results
with mass of WIMP and coupling constants

*H =X

£V=1(Cznozn + Cipolp)

* Non-relativistic process

[

« all operators must be invariant
by Galilean transformations

(v ~ 107 3¢ in galactic halo)
* Building operators using:
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Non-Relativistic Effective Theory (NREFT)

chltteringlamplitude:
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« Ri' : WIMP response function
- Velocity dependence: R?' = Rﬁfé + Rifl'(vz — v,zm-n)

. ,fT': nuclear response function
* ¥y =1(qb/2)"2
« b: harmonic oscillator size parameter
- k=M, A ¥, 2, ® and ®"
- M: standard spin-independent interaction
- X' + 2" standard spin-dependent interaction



Non-Relativistic Effective Theory (NREFT)

Scattering amplitude:
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DD event rate

« DD event rate

Egtax

p d
Rpp = MTexpm_); J du f(wu Zr Ny dER zexp T

ER,th
* Mrt,,, : exposure

+ Er.n : experimental energy threshold

* {oxp . EXperimental features such as quenching, resolution, efficiency, etc.

* Rpp = funisl;f(u) Hpp(u)
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Capture rate

» Capture rate

p 1 R _ 2/"2 w? /mr
Co == [ du fQu)y [} dr dmr? w? 51 pr(r) O(uf ™ —u) [0

« pr: the number of density of target

r: distance from the center of the Sun for Standard Solar Model AGSS09ph
u: DM velocity asymptotically far away from the Sun
* U,s.(1): escape velocity at distance r

Wz(r) =u® + ve?sc(r)



Capture rate

* Neutrino Telescope (NT):
 the neutrino flux from the annihilation of WIMPs captured in the Sun
« DM annihilations into bb

« with assumption of equilibrium between capture and annihilation:

C
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Event rate

velocity distribution

 Event rate:
" - S o)

Interaction

« Two parts of interaction and velocity distribution
* needs to avoid uncertainty
* interaction: include all possible interaction types
« velocity distribution: halo independent approaches

* Model independent method: the most general scenarios
« exploiting the complementarity between DD and capture
* various targets and different WIMP speed range



Complementarity between Direct Detection and Capture in the Sun:
Interaction-Independent bounds
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Bracketing DD experiments

« Hamiltonian with contact and long-range interaction:

T
e H = Zl-:O,lZil:Sl (C;[ + Z_;) OitT — ZTZiCiTOitT + ZTZiaiTq—;tT
« ¢. coupling for contact interaction

 a. coupling for long-range interaction
* In NREFT expected signals are quadratic forms in the couplings

 Experimental bounds single up allowed parameter space inside
multi-dimensional ellipsoids:

— T —
¢ RExp =C 'AExp cC = Zi,j Ci(AExp)ijCj <1

* C = (Cll C3,C4) ---,C14,C15, A1, UH3, Xy, ..., X114, a15): COUp|IngS vector
* Agyp: Matrix encoding all the information

S. Kang, I. Jeong, S. Scopel “Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic
effective theory”, j.astropartphys.2023.102854 (arXiv:2209.03646)



Bracketing DD experiments

* Allowed region is an intersection of ellipsoids

« When the ellipsoid of one experiment is totally inside
of the others, only that experiment decide the bound

* single constraint: N

)
* maX(Ca)l,c[,cO — Jl/(AExpl)aa jia ' o Exp 1
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-1 53 i Exp 2
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A. Brenner, G. Herrera, A. Ibarra, S. Kang, S.S. and G. Tomar, "Complementarity of experiments in probing the non-relativistic
effective theory of dark matter-nucleon interactions”, JCAP06(2022)026 (arXiv: 2203.04210)



Bracketing DD experiments

« combining different experiments
provides complementarity

0 0 0 0
5 0 0 0 O
'f. . c . = — 4
¢ -B-c<(max(c,))”, B 00 1 0 N
0 0 0 0 N
: . I A - Exp 1
* Linear matrix inequality & o . Exp 1
: -1 53 Exp 2
& >0, Z;&Sl, :z g
1=
_4-
& B , o , 4 -2 0 2 4
EiAr — 5 Isa positive matrix.
— max(c, Ca

A. Brenner, G. Herrera, A. Ibarra, S. Kang, S.S. and G. Tomar, "Complementarity of experiments in probing the non-relativistic
effective theory of dark matter-nucleon interactions”, JCAP06(2022)026 (arXiv: 2203.04210)
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Bracketing: LMI exclusion bands

This point is excluded
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S. Kang, I. Jeong, S. Scopel “Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic
effective theory”, j.astropartphys.2023.102854 (arXiv:2209.03646)
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LMI exclusion bands

Spin-Independent
|cq,c3, a1, a3,

[C11» C12,C15,X11, X12, “15]
M and @

Favor heavy targets
« mostly LZ and PandaX-4T

Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic
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Bracketing: LMI exclusion bands

4 ) 4
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Bracketing:
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LMI exclusion bands

 SD interactions and
non-interfering operators

* |7, a7l, Lo, @10l
[013» “13]; [C14» a14]

« Only two bands
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Bracketing: LMI exclusion bands
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Bracketing: relaxation factors

-
-l
= neutron

af, my, =20

« Except SI(1, 3, 11, 12, 15), our results have stable sensitivity
 due to the complementarity of proton-odd and neutron-odd targets

S. Kang, I. Jeong, S. Scopel “Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic
effective theory”, j.astropartphys.2023.102854 (arXiv:2209.03646)
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Bracketing DD experiments and capture
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A. Brenner, G. Herrera, A. Ibarra, S. Kang, S.S. and G. Tomar, "Complementarity of experiments in probing the non-relativistic
effective theory of dark matter-nucleon interactions”, JCAP06(2022)026 (arXiv: 2203.04210)
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Complementarity between Direct Detection and Capture in the Sun:
Halo-Independent bounds
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Halo independent approach

« Halo independent approach with arbitrary speed distribution, f(u)
« The only constraint: f;:g“xf(u) du =1

- Direct detection experiments have a threshold u > up?
« Due to the energy threshold of experimental detectors

Capture in

 Capture in the Sun is favored for low the Sun Direct Detection
WIMP speeds

*u< ugwx,T

* In order to cover full speed range:

combine DD and capture
F. Ferrer, A. Ibarra, S. Wild “A novel approach to derive halo-independent limits on dark matter properties”, JCAP09(2015)052




Halo independent approach

 Considering one effective coupling (c;) at a time:

* Rexp(ciz) = fdu f(u) Hexp(ciz»u) < Rmax
* R4 . cOrresponding maximum experimental bound

- Using relation : H(c?,u) = ¢?H(c; = 1,u)
* H(Cfmax(u)’ u) — Rmax

2 Rmax
* C; u) =
l,max( ) H(c;=1,1)

* ¢ max(u) 1 upper limit on ¢; at single speed stream u

 upper limit on ¢; over whole streams:
—1

2 ~ fumax du f(u)

LT 0 lemax(u)

C

F. Ferrer, A. Ibarra, S. Wild “A novel approach to derive halo-independent limits on dark matter properties”, JCAP09(2015)052



Halo independent approach

e ¢, =N (@) = cPP (@) : halo independent limit

~

* i: intersection speed of NT and DD G mml00GeV

* To cover whole speed range,
one may combine DD and NT
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Halo independent approach case |
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Halo independent approach case Il

o If (cPPY2 ,(u) >cZ atu=1u,, :
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« Halo independent limit may depend on u,,4,

F. Ferrer, A. Ibarra, S. Wild “A novel approach to derive halo-independent limits on dark matter properties”, JCAP09(2015)052



Halo independent approach case Il

—— Capture

DD .

Capture cover full speed range alone /@
2 NTN\2

c® < (™) (Upgy) Cmax

u umax

« Halo independent limit may depend on u,, 4,

F. Ferrer, A. Ibarra, S. Wild “A novel approach to derive halo-independent limits on dark matter properties”, JCAP09(2015)052
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Dependence on uy,, 4y

Case Il, (cPP)2 ., (uw) >c? at u =u,, 4 : c® < (cPP)2 . (Upgy) + C2

Case lll, ul? > upqay @ c? < (c"N2 10 (Umas)
* U 180 km/s — 8000 km/s
Effect of large u,,4, is mild: factor less than 2
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S. Kang, A. Kar, S. Scopel, "Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering fro -,
m direct detection and neutrino observations”, JCAP03(2023)011 (arXiv:2212.05774)



Relaxation factor

e Relaxation factor
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Relaxation factor
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« small or large mass range
 outside the bulk of Maxwellian
« smooth dependence on u

* intermediate range (10 ~ 200 GeV)
* inside the bulk of Maxwellian

 steep dependence on u
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Relaxation factor
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Relaxing factor

« small relaxing factors
* 0,7 : SD with no g suppression
* 091914 : SD with g? suppression

relaxing factor
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Relaxation factor

« High relaxation factor:
the halo-independent method can weaken the bound
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Kinematic conditions for inelastic scattering

e u? +vi.(r =0) > va,
« for inelastic scattering process to be kinematically possible

o y > yPD-—min

« for the recoll energy to be above the DD experimental threshold

U < uC—max

« for outgoing speed to be below the escape velocity in the Sun

X X
o uDD—min < uC—max >:<

_ nucleus nucleus
- for DD and capture intersect Heiel

5:mx’_mx>0
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Determining 6,4«

. my=20000Gev * High m,, region, DD and capture
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50F

 Above §™%* no HI bounds
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Dependence on uy,, 4y

* HI might be sensitive to w4,

« except point (3), 6,4, does not change
even if we extend the value of u,, 4,

* Only happens in Sl case and 6,4, does
not decrease dramatically
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Halo-independent exclusion
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 For increasing § the constraints get weaker
and WIMP mass range for HI bounds is shrinking
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Halo-independent exclusion plots
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HI bounds in long range interactions
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HI bounds in long range interactions
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Relaxation factor
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WimPyDD & WimPyC

+ Home

« Download

« WimPyDD
o Getting Started
o Examples
o Nuclear Targets

 User-friendly Python code
 object-oriented
 customizable
« portable

o Effective Hamiltonian

o Experiment

o Nuclear Response Functions

o Halo Function

o Formulas and definitions
* WimPyC

o Getting Started

o Examples

o Nuclear Targets

o Celestial Body

o Formulas and definitions
« Contact

 Calculates expected rates in any scenarios
e arbitrary spins
* inelastic scattering
« generic WIMP velocity distribution

* Published and can be downloaded:
* https://wimpydd.hepforge.org/

l. Jeong, S. Kang, S. Scopel, G. Tomar, “WimPyDD: An object-oriented Python code for the calculation of WIMP direct
detection signals”, Computer Physics Communications, 2022.108342 (arXiv: 2106.06207)

WIMPY/ DD|| WIMPYC

WimPyDD and WimPyC

WimPyDD is a modular, object-oriented and customizable Python code that calculates accurate predictions for
the expected rates in WIMP direct-detection experiments within the framework of Galilean-invariant non-
relativistic effective theory in virtually any scenario, including inelastic scattering, an arbitrary WIMP spin and
a generic WIMP velocity distribution in the Galactic halo. Starting from version 2.0.0 the additional module
WimPyC extends WimPyDD to the calculation of WIMP capture in celestial bodies. WimPyDD and WimPyC
exploit the factorization of the three main components that enter in the calculation of direct detection
signals: 1) the Wilson coefficients of the effective theory, that encode the dependence of the signals on the
theoretical parameters; ii) a response function that, besides nuclear physics, for DD depends on the features
of the experimental detector (acceptance, energy resolution, response to nuclear recoils) and for WIMP
capture on the properties of the celestial body; iii) a halo function that depends on the WIMP velocity
distribution. The three components are calculated and stored separately for later interpolation, combining
them together only in the last step of the signal evaluation procedure. This makes the phenomenological study
of the direct detection scattering rate with WimPyDD or of WIMP capture with WimPyC transparent and fast
also when the parameter space of the WIMP model has a large dimensionality.

WimPyDD is written by Stefano Scopel, Gaurav Tomar, Sunghyun Kang, and Injun Jeong.

WimPyC is written by Stefano Scopel, Gaurav Tomar, and Sunghyun Kang.

output
i Oierential Rate
dsigma_der 4 ate

Target
taget Halo Function
streanad hako
Wison
Costicie Hansitonian
s of_hamitonian
DD Count Rate
\ winp_dd_rafe

DD Experiment
i
v
—_— Celestial body wimp_capture_accurate
Sl [~ e o | output
wimp_caplure_matrix
-

o
load_response_funcions

WINP Captre Rate
Lxza Capture Response Functions _
isatope load_response_functions_capture

Geometrical Capure Rate
winp_capture_geom
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WimPyDD
 Calculates DD expected rates in any scenarios

« Three main components
« Wilson coefficients
 response functions
* halo function

WIMP\g’ DD

« WimPyDD is transparent and fast, suitable for large parameter space

 WimPyDD is used by the LZ collaboration:
* Phys.Rev.Lett. 133 (2024) 22, 221801 (e-Print: 2404.17666)
* Phys.Rev.D 109 (2024) 9, 092003 (e-Print: 2312.02030 )

l. Jeong, S. Kang, S. Scopel, G. Tomar, “WimPyDD: An object-oriented Python code for the calculation of WIMP direct

detection signals”, Computer Physics Communications, 2022.108342 (arXiv: 2106.06207)

50




WimPyDD

WIMP':@" DD

« Three main routines
« WD.dsigma_der: calculates the differential cross section on target
« WD.diff _rate: calculates the differential rate
without including the response of the detector.
- WD.wimp_dd_rate: calculates the integrated expected rates
including the response of the detector

« Four input classes
« element
« target: a single element or linear combination of elements

« eft_hamiltonian: with arbitrary combination of operators and Wilson coefficients

« Two operator bases available: Anand et al. arXiv:1308.6288 (spin=0,1/2)

Gondolo et al., arXiv:2008.05120 (any WIMP spin)

« experiment: experimental set-up information

l. Jeong, S. Kang, S. Scopel, G. Tomar, "WimPyDD: An object-oriented Python code for the calculation of WIMP direct

detection signals”, Computer Physics Communications, 2022.108342 (arXiv: 2106.06207)




1.44 x 10°
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1.38 x 10°

1.36 x 10°

WimPyDD

 Three main routines
« WD.dsigma_der: calculates the differential cross section on target
« WD.diff rate: calculates the differential rate

without including the response of the detector.
- WD.wimp_dd_rate: calculates the integrated expected rates
including the response of the detector

1.4 x 10°

102

l. Jeong, S. Kang, S. Scopel, G. Tomar, “WimPyDD: An object-oriented Python code for the calculation of WIMP direct
detection signals”, Computer Physics Communications, 2022.108342 (arXiv: 2106.06207)
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WimPyC

* Three main new routines
« WD.wimp_capture: calculates the capture rate

WIMPY C

« WD.wimp_capture_matrix: calculates the matrix for the capture rate
« WD.load_response_functions_capture: loads the response functions

« Two new classes
* isotope: without including the response of the detector
« celestial_body

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module of WimPyDD for the calculation of WIMP capture in celestial

bodies”, arXiv: 2510.21185




WimPyC

WIMPYC

Set-up a new celestial body: The input string is the name of the directory
WimPyDD/WIMP_Capture/Celestial_bodies/Sun containing the celestial body

information

sun=WD.celestial body('Sun')

Folder content

Name

__init__.py
& densities.tab
@ mass.tab
@ radius.tab

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module of WimPyDD for the calculation of WIMP capture in celestial

bodies”, arXiv: 2510.21185
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0.003 150.4 63.50307378922524 110.99518951225801 0.0014657444714226383 0.0013906037702674727 ©.000316244070079734 ©.7151408247680807 0.00056131 1. 1248647557397 0. Wb 987 0. 3578 0.264 713 0. 055%2074779303533 0.14541°
0.00525 150.25 60. 90084494196752 185 90620122032831 0.0014162! 0.0013274703964233994  0.0003017279427270817 0.6837446692817823 0.0005362763921841927 1.0’ 0.0717 75 0.0032551924500586003 0.2527905942444279 0.00573832953657691!
0.01325 148.6 56.5' 195 0.0013’ 9.001196011: 0.00027188763810846365 0.6223797558778326 0.00048798562200277505 0. 9356532365842593 0.058421525870738844 0.0029613747555445767 0. 229979%579777517 0.005222249178999"
0.021: 145 6 56. 7904 90.12962342532337 ©.00149251 1 0.0011: 74977 @, 0.601322616577177 0.00047127315690709086 ©0.961214501301532 ©0.04619772068847809 0.002861. 725 1946 0.005043:
0.028999999999999995 141.7 57.2022180786331 84.71994121486166 0.0016719775246950605 ©.0010704906443635377 0. 08524347692051526147 0.5817617664042637 0.00045572175127310777 0.93973 723 0 736 0. 6827651621865156266 0 2146925770532356 ©0.00487"
0.0365 137.0 58.069887496212424 78.66699479286336 0.0019191053089907528 0.0009982753141811575 . 73240494  0.560. 657671 ©.0004385411147387579 0.9141731090477088 0.02135085690462679 0.0026594610140918793 0.20665926682197203 0.004693936137701033
0.044 131.6 58. 98064774213467 72. 0.00: 78019 0.0009193215105258635 0.00020904784646898013 0. 537122944332282 0.0004199251325622905 ©0.8837753380037622 0.011581352394175065 0.002550561222403319 0. 19801797311826033 0.004498560318865119 @
0. 59.7542 65.42282543117136 0. 0.0008367785402188715 @, 1556496 0.511° 17 0. 168213 0.8475900805513289 0. 707 7434  ©.18845531422834(
0. 1"“ 60.31177762198074 58.7. 113 9.00311481. 7202 0.000 774535 0.0001712585871126206 O. 0. 1284 0, 797593  0.000311172899705523 0 6023052014&4595118 0.17925370699952¢
0. 113 60. 9! 7717453595 52. 25720729568912 0. 003696034319423806 0. 5036705248275337054 B ﬂﬂﬂ 7 0 0. 144073555 0. 7658579243513283 0.0 0. 0021768259435432328 0. 1538413434353898 0.00384884;

print(sun)
Sun, radius 1.0 (solar units), mass 1.0 (solar units), densities of follow
targets:
['1H', '4He', '3He', '12C', '13C', '14N', '15N', '160', '170', '180', '20@Ne’
'23Na', '24Mg', '27A1', '28Si', '32S', '4@Ar', '40Ca', '56Fe', '58Ni']
contained in

WimPyDD/WIMP_Capture/Celestial_bodies/Sun/densities.tab.

No help provided for densities.tab content

>>> print(sun.targets[181])

symbol 56Fe, atomic number 26, mass 52.136

Nuclear form factor:Definition from Phys.Rev.C 89 (2014) 6, 065501 (e-Pri
1308.6288[hep-ph]) used

for nuclear W functions as default
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WimPyC WIMPYC

 Calculate response functions: Once you calculate the response functions for each
isotopes you can use it for the other celestial bodies sampling in corresponding
energy range.

tabulated response functions for WIMP Capture

le—-17

1.75 1

1.50 1

1.25 1

1.00 A

0.75 1

0.50 +

0.25 1

0.00 ———"—eesgre

107! 10° 10! 10? 103 104 10° 10°

recoil energy

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module of WimPyDD for the calculation of WIMP capture in celestial
bodies”, arXiv: 2510.21185
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Extensive tests to validate WimPyC against published results:

Sun, NRCEFT operators

Cy
------ e ---- arXiv:1501.03729 1010 --=- arXiv:1501.03729
— WimPyC — WimPyC
1021 1018
w w
= =
(8] Q
1017
1020
1016
10! 10?2 103 10t 10? 103
my [GeV] my [GeV]
[ort Cis
1014 I ---- arXiv:1501.03729 ---- arXiv:1501.03729
— WimPyC 1013
1013
@ @ 1012
= =
O 1012 ©
il
101]
. 101 .
10! 102 103 10t 102 10°
my [GeV] my [GeV]
1025 Cl
-=-= arXiv:1512.03317
102 —— WimPyC, §=50 keV
—— WimPyC, 6=100 keV
1023
Q)
ak
Q 1022
1021
10%°
10! 102 103
my [GeV]

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module
bodies”, arXiv: 2510.21185

WIMP

Earth, NREFT operators

G Cs
10144 ---- arXiv:1609.08967 1084 ---- arXiv:1609.08967
— WimPyC — WimPyC
10134
v
g 1012
(§]
10114
10104
10! 10° 103 10! 10? 103
my [GeV] my [GeV]
G
102 & 10° )
-- arXiv:1609.08967 ---- arXiv:1609.08967

100+ — WimPyC — WimPyC

C[1/s]

10°10 /

10! 102 103 10! 102 10°
my [GeV] my [GeV]

Sun, Sl interaction, inelastic sc
attering

of WimPyDD for the calculation of WIMP capture in celestial
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Extensive tests to validate WimPyC against published results:

Jupiter, 0=10735 cm?

Light WD, 0=1073% cm?

1025 F

1024 J

---=- Asteria
— WimPyC

-=-=-- arXiv:2309.10843
—— WimPyC

—-—
S

1028 4

~
L
______
S~

v Q
= =
© 107 e
Jupiter White Dwarf
1022 4 1026 -
101 100 101 102 10-1 100 101 102
my [GeV] my [GeV]
MStar, M = 1.0 M,
1047 { === arXiv:2405.12267
— WimPyC
1041 — WimPyC (Geo)

Main Sequence Star

N.B.: at high cross section optical thi
n regime no longer valid, multiple sc
atters set in (Capture rate eventually
saturated by geometrical limit)

108  1g

p-s 197 #E 10

Opy [cm?]

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module of WimPyDD for the calculation of WIMP capture in celestial

bodies”, arXiv: 2510.21185
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Extensive tests to validate WimPyC against published results:

Massless propagator
C

1

-== arXiv:1305.0912
—— WimPyC, g2
—— WimPyC, g~*

10!

102 103

my [GeV]

N.B.: for a massless propa
gator the capture rate dive
rges at low momentum tra
nsfer. Such events correp
ond to WIMPs locked on
orbits of very large apheli
on.

WimPyC allows to regulari
ze the capture rate by rem
oving orbits that cross Jup
iter ( “Jupiter cut”).

Matricial techniques using wimp_capture_matrix and wim
p_dd_matrix (allowed regions inside ellipsoids)

le—4 Ca, mx=100 GeV

le—6 Ca,

m, =100 GeV

1.0 sun

0.51

0.0

cj [GeV~2]

=0.5

-1.0

c] [GeV~2]

Lz
Sun

S. Kang, S=:Scopet, Gz Tom

bodies”, arXiv:?51021185

5

Match speci o
ovmede (| WIMPYC
non-relativis
ry
Anapole DM
10?77 -=--IceCube bound (bb)
—— Sun, WimPyC

C[1/s]

XYHY°X8"Fpy = 2 (305 + C300)
T

101 102 103
m, [GeV]

le23

1.4

Speed respon Co = /0 duf (u)Ho(u)

se function He
(u) for halo-in *
dependent an ©
alysis

Sun, Sl
my =40 GeV

0p,=22x107* cm?

1073 102 101 10° 10! 102 103

u (km/s)
extension module of WimPyDD for the calculation of WIMP capture in celestial

ch [GeV~?] le-5
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additional components of WimPyC module

Differential Cross Secti

dsigma_der

Target
target
Hamiltonian
eft_hamiltonian
DD Experiment \
experiment

Celestial body

I

DD resp F
load_response_functions

DD Count Rate
wimp_dd_rate

WimPyC

WIMP Capture Rate
wimp_capture_accurate

celestial_body

S. Kang, S. Scopel, G. Tomar, “WimPyC: an extension module of WimPyDD for the calculation of WIMP capture in celestial

bodies”, arXiv: 2510.21185

v V VU

L1

WIMP Capture Rate

R, Ei
Capture R F

wimp_capture_matrix

WIMP Capture Rate
wimp_capture

load_response_functions_capture

> Differential Rate §-
diff_rate

WIMP";@{ DD

WIMPYC

| Geometrical Capture Rate

| wimp_capture_geom

|.-
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WimPyC vs. other codes for WIMP capture in celestial bodies

NREFT

Arbitrary DM
spin

Inelastic

Interactions scattering

Velocity
Distribution
flexibility

Celestial
Bodies

Scattering
Regimes

X Earth/Sun | Optically
(SI/SD) Thin

X X X v Earth/Sun Optically
(SI/SD) Thin

X X X X Earth/Sun/ | Optically

(SI/SD) (Maxwellian) Jupiter/ Thin/Thick
BDs/ ...

X X X X Earth Optically
(SI/SD) (Maxwellian) Thick

v X X X Stars Optically
(Maxwellian) Thin

v v v Optically
Thin

WimPyC can not be used when the speed of the WIMP is relativistic (neutron stars) and in the case of multiple

scattering. And it can not calculate additional effects such as thermalization, equilibration, evaporation.




Summary

un allows to obtain bounds that do not depend on
the WIMP-nucleus interaction or the WIMP velocity

celestial bodies in virtually any scenario

nts and capture in celestial bodies

WIMP\F@,{ DD

WimPyC is the extension of WimPyDD that allows to calculate WIMP capture in

WIMPYC

The complementarity between WIMP direct detection and WIMP capture in the S

Using WimPyDD and WimPyC, one can easily correlate direct detection experime
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Back-up



Non-Relativistic Effective Theory (NREFT)

- Each operators have distinct couplings to proton and neutron:
z:06=p,nzil=51CL{IOia» c; =0

- Equivalent form using isospin:
212(cP1 + ¢l13)0; = 291212, cF O, d=cl=0

p=0G m=0G) 1= ((1) (1)) 3 S (é —01)
=5l +ef) cl=5(c —c)

t'=1 tl=1,



NREFT: nuclear response

response functions W:
1 1 > _ S 2
2]yt+1 ZjN+1ZSpinS|M| = Zsz=0»12 '=0, vt
! .
- R*: WIMP response function

WIMP response function

Factorize amplitude into WIMP response functions R and nuclear

V)

Nuclear response function

1T’ :
[ ]
¢ Wk . n u C | e a r re S p O n S e fu n Ct I O n TABLE VII.  Parity of the nucleon currents under space reflection P and time reversal 7. Columns P; and T list the parities of their

Jth multipole moments (the notation L, TE, and TM stands for longitudinal, transverse electric, and transverse magnetic multipole,

respectively). The last column lists the allowed Js in a ground state that is P and 7 (or CP) invariant.

« y=1(qb/2)"2 T T—

T

Multipole:

Ground state

+ b: harmonic oscillator size parameter ¢ s -
k — M’ A) Z,) Z,,, ¢, and @II A o+ —1

- allowed responses assuming nuclear ground
state is a good approximation of P and T

e
X
3
-

|

+1
+1
-1

+1

L:

TE:
T™:

L:

TE:
T™:

L:

TE:
T™:

Even J
Forbidden

Odd J
Odd J
Forbidden

Forbidden
Forbidden
Odd J

Even J
Even J
Forbidden

W.C. Haxton, N.Anand and A. L.Fitzpatrick, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev., 2014
R. Catena and B. Schwabe, Form factors for dark matter captured by the Sun in effective theories, JCAP 2015

64



NREFT: nuclear response

« Multipole expansions for nuclear electroweak response

* In elastic transitions the contributing multipoles are restricted by
the known approximate good parity and T of nuclear ground
states

TABLE VII. Parity of the nucleon currents under space reflection P and time reversal 7. Columns P; and T'; list the parities of their
Jth multipole moments (the notation L, TE, and TM stands for longitudinal, transverse electric, and transverse magnetic multipole,
respectively). The last column lists the allowed Js in a ground state that is P and T (or CP) invariant.

X Operator P T Multipole: P, T, Ground state

M 1 +1 +1 (—1)7 (—1)7 Even J

Q Uy - Oy -1 +1 (=1)7+1 (=1)7 Forbidden

E Gy +1 -1 L: (—1)7*! (=1)7+! Odd J
TE: (=1)7+! (—1)7+! Odd J
T™: (—=1)7 (—1)7+1 Forbidden

A e -1 -1 L: (—1)7 (—1)7+! Forbidden
TE: (—=1)7 (=1)7+! Forbidden
T™: (=1)7+1 (—1)7+! Odd J

b Uh X &N -1 +1 L: (—1)7 (—1)7 Even J
TE: (—1)7 (—1)7 Even J
T™: (=1)7+1 (—1)7 Forbidden 65




NREFT: WIMP response functions

WIMP response functions

/ 9 9
rr! 12 9 T j (-?X + 1} f} 13 = 12 + & +
A 'va -.m:,g) = rjc] + 3 g U7 C5C +““1 C3Cy +m:g €11671 | 5
N ‘ _ﬂ.f N
{ ) [ 2 v i+ 1) 2 ) 2 2
R tJ-L-‘z.q—, = q—.c‘ch I T 2 €19 — q—,crr €l — q—,c"r q_
e\ | 4m3, 5 T e 127 pp s | | G127 pa€is | 2
{ y [ C s 2 y
! 12 9 T J‘x{.?x + 1} T q° - o 4
"M '\ﬂT "m:i,-) = |G + 3 Cl2 — :mg.\,cl‘r’ €11 m3,’
I'( 2 i ] { P+ :] ' 2 ¢ 2
R'.I:'.I: 1'_J,J‘.'3_ q_r — jk J'x el qr el et q_r'
o\ 2 1 12612 T 2, 88 ) |
{ 2 2 s of
T 12 q q e .?x{f»"x J o
i 'kﬂT mi) = S U e ['34'34 +
9 4 9
T (et Loerye 4 ¢ 12r o
m_g{’34¢u +ecgey )+ i Eh'ﬁu +vgtelyely + ml, — U C30; a] :
N N
9 9
12 ¢ 11 ¢ g, Jyldy +1)
s (ﬂj mi) = 3 [mifuf c;r:; -I-’Ui c?&] + 19 [ -|-
2 12 2
q w T g
m2 f’f}ﬂt + 12 ('31;.1 - m_gf’ 5) ('31,3 ) ”‘1 ‘1’14'314] ,
N N
¢ iy +1) q q
y 2
+1) N g
Ry uu.q—, = w Cely — Cyle .
AY ( d mja., 3 ( 4 i) }) mi,

e ¢;: coupling for i-th operator
* j,: spin of WIMP
* my:. Mass of nucleon

v WIMP incoming velocity
 perpendicular to the direction of
transferred momentum q
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Halo functions

- Standard Halo model(SHM)
- WIMP velocity distribution as Maxwellian:

02 /1,2
fgai (u) = 7T3/2U0Nesc e /0 O(Ugse — 1)

- u: WIMP speed in Galactic rest frame
+ v,o. Galactic rotational velocity

 0: Heaviside step function

* Uysc. ESCape velocity

+ N, = erf(z) — 2ze™ %" /m1/?

2 _ 2 2
Z" = ueSC/UO




: 1o 11
Halo functions Wi 2

. ; FI‘,‘
U V¢

¢ |n |aborato ry fra me : ) --------- summer

1 3 3/2 _3 |W;ﬁ:| 2 v < Vese + |VE — UG v < vese + vk + Q)|
SN . _
f(vT; t) —_ N (2nv$ms) e 2V%ms @(uesc _ | ’UT n UE (t) |)

. N, = erf(z) — 2ze™ %" [m1/?
.+ 2% = Bugsc/(zvﬁms)

¢ Vppns = \Evo =~ 270 km/s (assuming hydrostatic equilibrium)

- Modulation

1/2
.« (b)) = [vé + vé + 2vovg cosy cos|w(t — to)]] /

» cosy =049, vg = 29km/s, vy = vy + 12 km/s, vy = 220 km/s, ugsc = 550 km/s
- y: elliptic angle, vg: Earth velocity around the Sun, vg: velocity of the Sun
+ (&) =no + 1y coslw(t — to)]



Hfunction

- Why Maxwellian? -> Violent relaxation ][] ] wovewina] [ ]]]]

-
-- -
- . s

1 2/, 2 . :
—u” [v z p .
f al\u) = e 0 @ Vese — u) winter ’ = .
ga ( ) WB/QUS)NGSC ( ese Tl ."
. 1 3 3/2 _w B . " U
f@r.t) = N (27;1,2 ) e Prms O(Uese — |0 + UE(1)]) e ‘
- Tms x
N [ £(2) 2 _22] -1 W g summer
JAY = errl z ) — zZe s ARG
™ U < Vese + Ivl'_if — Vg V < Vese + |‘l'—f‘f o i r?: ]

- temperature? -> root mean square velocity
« hydrostatic equilibrium

' M
— ) 4
AM P s =il
2 b? rot R
ﬁ(“‘§2\ 3 | > mw v
M(R) a2 - __']‘ = _,7’\\'(.:,,-\ : '[‘ S s
\3 p. 2 a 3
e
o < - 1 dM
aM = IIT/\)’/)H dR — 47 R = —
pw dR
. ] ) ] 02 1 pw i
CArRZ2 AP = C AN dANT ey L dM mwuvs,,,. dpw = 1“;, I

1'])-_) [ l/.[l) { IFRAT T [1



Linear Matrix Inequality (LMI)

* Linear matrix inequalit \
b inequaltty 620, Y eg<l.
» constrained minimization —
using lagrange multipliers n B
* bounds are opened Zf,-Ak - > is a positive matrix.
max(c,

e 'Kuhn Tucker’ minimization. i=1

« Convex constraint
« If two points obey the constraints, TN
all the points joining them also obey ° :



Bracketing: LMI exclusion bands

m,=100, subspace:c;, c;, target coupling:c}

le—7
8
[
o ee—————
2
— f S
of iz e
o PRNGAKAT N
-2 { - ACOG0(CIFE)
e PCOBOICF3I) .
_4] - DAMIC T,
—— SuperCOMS —t— ..
_g | — tDmsLice
— COEINE
—— XEMOMNLT
-8

T T T T T T T
—0.00015-0.00013 —0.00005 0.00000 000005 G00010 0.00015

m,=100, subspace:c,, c;, target coupling:cf

le—§
075
0.50
025 1" T
. —_—
o.oo
- 4
- PandaxdT
05—~ PCOsolCIFE) ———— [
e PICOBO[CF3I)
—0.50 DAMIC
—— SuperCDMS
—— CDMSLITe
—0.75
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—— XEMONIT
-1.00 .
-7.5  -ED -5 o 25 75
le—6

m,=100, subspace:c;, C3, target coupling:c{

la—7

1o

0.5

L)

e PICOGOICIFE)

—_— cf
- LE
- Pandaxar

« PHCOED(CF3N)
= DAMIC
—— SuperCDMS
— CDMSLIte
— COSINE
—— XENONLT

-1

1

2
le—-5

my=100, subspace:cy, 3, target COI-ID“I‘IU:C?

Lo

oa

0&

04

nz

on

» ellipsoids for each experiments
(zooming)

« for experiment
saturating the bound:
¢ CTAExpC —_ 1

S. Kang, I. Jeong, S. Scopel Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic
effective theory, arXiv:2209.03646
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Bracketing: relaxation factors
max(V €) ~ 102

107 5

c?, m, =20

] lang range
1 W short range

Bl neutron

1 3 4 5 B 7 8 9 10 11 12 13

relaxation factor r (y-axis value):

1

Hm st most __ less less
M{} 'Y (‘ _2 (‘(l" M(} 03 (‘i} I.

Ievel of tunlng (horizontal bar):
‘f = max (i[ .fess] ”[Cfe.s.s]j‘) _ | Iess T ?é[cfess]5| > F2+
degree of sensitivity:

el = 1/ < 1/r?

« sensitivity of the result to small changes of matrix
element evaluation

max( £) < 10*: beyond such value
numerical calculation may not be reliable

S. Kang, I. Jeong, S. Scopel Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic 7
effective theory, arXiv:2209.03646



Halo independent approach

- Halo independent approach with arbitrary speed distribution, f(u)
« super position of N streams

c f,t) = 22° L (O — )
c (0, 0) = T E L0y —v) = Lm0 (v — v)

/1(01)
: OV W) = V5OV (e, —v) = NP

O(v, —v)

« Rate
_ Px Ns5 Vk d
' Ry (O =057 6M(8) [ 2rdv Ry g1 g (V)



.H.a.lo inldlep

10—1.

1072.

c(1/m3)

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from

endent approach

—— IC + SK (SHM) (xx - bb)

—— XelT + Pico (CsFg) + Pico (CFs/) (SHM)
— halo-indep. upper limit (Umax = 780 km/s)
---- halo-indep. upper limit (Umax = 8000 km/s)

« Spin independent

01,3,11,12,15
* WM' ch”

« Enhanced for heavy targets

operator Ok {]: operator 5{ '{,:’

1 M(q°) - 3 "(¢*) | £'(¢%)
A 3" (%), (%) - 5 A(g*) | M(¢?)
6 3" (q*) - 7 - > (¢°)
8 A(q?) M(q%) 9 > (¢%) -

10 ¥ (q?) - 11 M(q?) -

12 " (¢%),®'(¢*) | £"(¢°),X'(¢°) 13 '(¢*) | "(¢°)
14 - > (q?) 15 " (¢%) | ¥'(q*)

direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)
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S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from

104 for
my (GeV)

c (1/md)

105F
104.
10%
102

10
L

105.

104.

103.
Il

m, (GeV)

IC + SK (SHM) (xx - bb)

== XelT + Pico (CsFg) + Pico (CF3l) (SHM)
— halo-indep. upper limit (Umax = 780 km/s)
---- halo-indep. upper limit (Umax = 8000 km/s)

ent approach

« Spin dependent

* O456,7,89,10,13,14
« Wy, Wy directly coupling to spin
« Wy: related to angular momentum
« Wg: spin larger than 1/2
operator 0k s operator ggt i
1 M(q) - 3 ®"(¢*) | ¥'(q?)
4 2"(¢°),%'(¢°) - 5 Ag*) | M(¢%)
6 ="(q%) - 7 - | X(d")
8 A(g?) M(q°) 9 (%) | -
10 2'(g’) - M| -
12 | 9"(¢%),®'(¢%) | 2"(¢"),X'(¢") | [18 | 9(¢") | Z"(¢%)
14 - >'(¢°) 15 | ®"(¢% | ¥'(q*)

direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)
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DD event rate (inelastic scattering)

« DD event rate

P 2uyr u? /m do
Rpp = Mrexpm—f(fdu f(Wu X Ny fER’;T T dE, (expﬁ

\4

P Emax do
Rpp = MTexp m_);f du f(wWuZy NpO(u? — 1772‘*) fEmin dER (expd_EZ

2
ot U 268
Emax,min(u) = ZXT (1 + \/1 — )

mr Wy U2 X ¥’
.
2
DD—min __ X
+ ) > nuclieus nucleus
\ \/m ( HxT ? T T'*

5=mX/—mX>O



Capture rate (inelastic scattering)

« Capture rate

p (W (R - 2 W g 4

\/
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2 > 2 2
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Capture rate (inelastic scattering)

« u$T™Ma* js determined:

2
2 2
X X 2 Kxr __mr VT 2

« Outgoing speed of y' is below u,g,
- Heavier state quickly decays back to the lighter particles

+ Lighter particles carry away most of the energy
- Outgoing WIMP does not receive a significant amount of kineticxenergy

and remains locked in a bound orbit. >:<X'

nucleus nucleus

5=mr—mx>0

X



Determining 6,4«

(a) (b)
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 below this value, only Capture determines 6,4«
e S| (T =°°Fe, N = Xe)

e r=23
« SD (T = ?7Al, N = Xe (]))

« r =486 (4.7)
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Determining 6,4«
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Determining 6,4«

(b)
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 below this value, only Capture determines 6,4«
* SD (T = #7Al, N = Xe (I))
« r ~4.86 (4.7)
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* Smax 1S determined by a combination
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6 (keV)
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Bounds on «

= = SK +1C-2017 (bb)

—— SK + IC-2022 (bb)
—— DD (XenT + LZ)

+ SK+ IC (bb) [old] .

-+ DD (Xe100 + Xe10) [old]

—— HK-2021 (bb)

11l

103

9.25km/s = vt = 37km/s

« Updating bounds from SHM
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Determining 6,4«

c? . my=20.0 GeV

250
» No HI bounds
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100 ¢ 1
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 Above 6™%* no HI bounds
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NREFT with long-range interactions

. I — Zr=0,1( agy 1 1NtT asz)z §X -§NtT)

q%+Mg q%+M;
« Scattering amplitude:
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» Capture rate
C@ — pX fdu f(u) fRO d,r 47_[,’,. W ZT ,OT(T) @(uc max ) Emax dER ZZT

R

* Co may diverge when u - 0

 Capture favors for low WIMP incoming speed and has no lower limit on u

. C 1 2 2 _ ~
E...— sz(u + v5,.), where v, = vesc(rSun_]upiter) =~ 18.5 km/s
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