Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations

Sunghyun Kang

Based on JCAP03(2023)011(arXiv: 2212.05774) in collaboration with Stefano Scopel and Arpan Kar

CQUeST Workshop 2023

Introduction: evidences

- Dark Matter (DM)
 - 25% of mass density of the Universe
 - 'Dark': invisible
- Galaxy rotational curve
 - contrast to Kepler's law
 - The rotation curve can be used to measure the mass distribution
 - predicted more mass than the visible one

Introduction: evidences

- The density of the Universe (ρ_c)
 - equations of state: $w_i = p_i / \rho_i$
 - Dark Energy ($w_{\Lambda} = -1$)
 - Dark Matter ($w_{DM} = 0$)
 - baryons ($w_b = 0$)
- Concordance model
 - $\Omega_i = \rho_i / \rho_c$
 - CMB: flat Universe $\rightarrow \Sigma_i \Omega_i = \Omega_{\Lambda} + \Omega_{DM} + \Omega_b = 1$
 - SN: accelerated expansion $\rightarrow \Omega_{\Lambda} \cong 0.7$
 - lensing effect of Galactic cluster $\rightarrow \Omega_{DM} \cong 0.25$
 - $\Omega_b \cong 0.05 \rightarrow \text{amount of light isotopes well explained}$

Concordance model Jaan Einasto, Dark matter (arXiv:0901.0632) 2009

Introduction: candidates

• Properties

- no interactions via EM or Strong forces
- need to be neutral
- Weak-type interaction

HDM	CDM
Light	Heavy
Fast	Slow
Failing to explain distribution of Galaxy at small scales	successful to explain distribution of Galaxy at small scales
Neutrions, etc.	WIMP, Axion, etc.

• Hot Dark Matter (HDM)

- neutrinos, etc
- Do not cluster at small scales
- Cold Dark Matter (CDM)
 - non-relativistic at decoupling
 - bottom-up structure formation: smaller structures formed first that merge to bigger ones

Introduction: WIMPs

Weakly Interacting Massive Particle (WIMP)

- Weak-type interaction
 no electric charge, no color
- Mass range in GeV-TeV range
- WIMP miracle
 - correct relic abundance is obtained at WIMP $< \sigma v > = weak \ scale$
 - most extensions of SM are proposed independently at that scale.

Introduction: detection strategies

- Direct detection: DM interacts with SM particles (left to right)
- Indirect detection: DM annihilation (top to bottom)
- Accelerator: DM creation (bottom to top)

Direct Detection (DD)

- The signals are WIMP-nucleus recoil events
- Low probability requires high exposure
- Underground to avoid background
- Direct Detection experiments depend on :
 - Detector's target (nuclear response functions)
 - Detector's response (efficiency, light/charge yield, energy resolution, exposure)
- Different nuclear targets and background subtraction:
 - Ionizators, scintillators, bubble chambers/droplet detectors and etc.
 - COSINE-100, ANAIS, DAMA, LZ, PandaX-4T, XENON-1T, PICO-60 and ect.

7

Indirect Detection

- WIMP scatters off nucleus at distance r inside celestial body
 - same interaction probed by DD
- If its outgoing speed v_{out} is below the escape velocity $v_{esc}(r)$, it gets locked into gravitationally bound orbit and keeps scattering again and again
- Capture process is favored for low (even vanishing) WIMP speeds

- WIMP is slow, so that the recoil events are non-relativistic
- NREFT provides a general and efficient way to characterize results with mass of WIMP and coupling constants

• Hamiltonian:
$$\Sigma_{i=1}^{N} (c_{i}^{n} \mathcal{O}_{i}^{n} + c_{i}^{p} \mathcal{O}_{i}^{p})$$

- Non-relativistic process
 - all operators must be invariant by Galilean transformations $(v \sim 10^{-3}c$ in galactic halo)
- Building operators using: $i\frac{\vec{q}}{m_N}$, \vec{v}^{\perp} , \vec{S}_{χ} , \vec{S}_N

Operators spin up to 1/2 $\mathcal{O}_1 = 1_{\chi} 1_N; \quad \mathcal{O}_2 = (v^{\perp})^2; \quad \mathcal{O}_3 = i \vec{S}_N \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp})$ $\mathcal{O}_4 = \vec{S}_{\chi} \cdot \vec{S}_N; \quad \mathcal{O}_5 = i\vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}); \quad \mathcal{O}_6 = (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \frac{\vec{q}}{m_N})$ $\mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^{\perp}; \quad \mathcal{O}_8 = \vec{S}_{\chi} \cdot \vec{v}^{\perp}; \quad \mathcal{O}_9 = i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$ $\mathcal{O}_{10} = i\vec{S}_N \cdot \frac{\vec{q}}{m_N}; \quad \mathcal{O}_{11} = i\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}; \quad \mathcal{O}_{12} = \vec{S}_\chi \cdot (\vec{S}_N \times \vec{v}^\perp)$ $\mathcal{O}_{13} = i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_N \cdot \frac{\vec{q}}{m_N}); \quad \mathcal{O}_{14} = i(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \vec{v}^{\perp})$ $\mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N}),$ 9

• Each operators have distinct couplings to proton and neutron:

$$\Sigma_{\alpha=p,n}\Sigma_{i=1}^{15}c_i^{\alpha}\mathcal{O}_i^{\alpha}, \qquad c_2^{\alpha}\equiv 0$$

• Equivalent form using isospin: $\Sigma_{i=1}^{15} (c_i^0 1 + c_i^1 \tau_3) \mathcal{O}_i = \Sigma_{\tau=0,1} \Sigma_{i=1}^{15} c_i^{\tau} \mathcal{O}_i t^{\tau}, \qquad c_2^0 = c_2^1 \equiv 0$

$$|p\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} |n\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad 1 \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \tau_3 \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$c_i^0 = \frac{1}{2} \begin{pmatrix} c_i^p + c_i^n \end{pmatrix} \quad c_i^1 = \frac{1}{2} \begin{pmatrix} c_i^p - c_i^n \end{pmatrix}$$
$$t^0 \equiv 1 \quad t^1 \equiv \tau_3$$

• Scattering amplitude:

 $\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\sum_{spins}|M|^{2} \equiv \sum_{k}\sum_{\tau=0,1}\sum_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\tau'}, \frac{\vec{q}^{2}}{m_{N}^{2}}, \left\{c_{i}^{\tau}, c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$

• $R_k^{\tau\tau'}$: WIMP response function

- WIMP response function
- Velocity dependence: $\mathcal{R}_{k}^{\tau\tau'} = \mathcal{R}_{k,0}^{\tau\tau'} + \mathcal{R}_{k,1}^{\tau\tau'} (v^2 v_{min}^2)$
- $W_k^{\tau\tau'}$: nuclear response function
 - $y = (qb/2)^2$
 - b: harmonic oscillator size parameter
- k = M, Δ , Σ' , Σ'' , $\widetilde{\Phi}'$ and Φ''
 - allowed responses assuming nuclear ground state is a good approximation of P and T
- N. Anand et al. Phys.Rev.C.89.065501
- R. Catena and B. Schwabe, JCAP04(2015)042

TABLE VII. Parity of the nucleon currents under space reflection P and time reversal T. Columns P_J and T_J list the parities of their Jth multipole moments (the notation L, TE, and TM stands for longitudinal, transverse electric, and transverse magnetic multipole, respectively). The last column lists the allowed Js in a ground state that is P and T (or CP) invariant.

Nuclear response function

X	Operator	Р	Т	Multipole:	P_J	T_J	Ground state
М	1	+1	+1		$(-1)^{J}$	$(-1)^{J}$	Even J
$\tilde{\Omega}$	$ec{v}_N^+ \cdot ec{\sigma}_N$	-1	+1		$(-1)^{J+1}$	$(-1)^{J}$	Forbidden
Σ	$ec{\sigma}_N$	+1	-1	L: TE: TM:	$(-1)^{J+1}$ $(-1)^{J+1}$ $(-1)^{J}$	$(-1)^{J+1}$ $(-1)^{J+1}$ $(-1)^{J+1}$	Odd J Odd J Forbidden
Δ	\vec{v}_N^+	-1	-1	L: TE: TM:	$(-1)^{J}$ $(-1)^{J}$ $(-1)^{J+1}$	$ \begin{array}{c} (-1)^{J+1} \\ (-1)^{J+1} \\ (-1)^{J+1} \end{array} $	Forbidden Forbidden Odd J
Φ	$ec{v}_N^+ imes ec{\sigma}_N$	-1	+1	L: TE: TM:	$(-1)^J$ $(-1)^J$ $(-1)^{J+1}$	$(-1)^J (-1)^J (-1)^J$	Even J Even J Forbidden

WIMP response functions

$$\begin{split} R_{M'}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= c_{1}^{\tau} c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi} + 1)}{3} \left[\frac{q^{2}}{m_{N}^{2}} v_{T}^{\pm 2} c_{5}^{\tau} c_{5}^{\tau'} + v_{T}^{\pm 2} c_{8}^{\tau} c_{8}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{11}^{\tau} c_{11}^{\tau'} \right], \\ R_{\Phi^{\prime\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{q^{2}}{4m_{N}^{2}} c_{3}^{\tau} c_{3}^{\tau'} + \frac{j_{\chi}(j_{\chi} + 1)}{12} \left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) \left(c_{12}^{\tau'} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau'} \right) \right] \frac{q^{2}}{m_{N}^{2}}, \\ R_{\Phi^{\prime\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[c_{3}^{\tau} c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi} + 1)}{3} \left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau'} \right) c_{11}^{\tau'} \right] \frac{q^{2}}{m_{N}^{2}}, \\ R_{\Phi^{\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{j_{\chi}(j_{\chi} + 1)}{12} \left(c_{12}^{\tau} c_{12}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau'} \right) c_{11}^{\tau'} \right] \frac{q^{2}}{m_{N}^{2}}, \\ R_{\Phi^{\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{j_{\chi}(j_{\chi} + 1)}{12} \left(c_{12}^{\tau} c_{12}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau'} c_{13}^{\tau'} \right) \right] \frac{q^{2}}{m_{N}^{2}}, \\ R_{\Sigma^{\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{q^{2}}{4m_{N}^{2}} c_{10}^{\tau} c_{10}^{\tau'} + \frac{j_{\chi}(j_{\chi} + 1)}{12} \left[c_{4}^{\tau} c_{13}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} v_{12}^{\pm 2} c_{13}^{\tau} c_{13}^{\tau'} \right], \\ R_{\Sigma^{\prime\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{18 \left[\frac{q^{2}}{m_{N}^{2}} v_{12}^{\pm} c_{3}^{\tau} c_{3}^{\tau'} + v_{12}^{\pm} c_{7}^{\tau} c_{7}^{\tau'} \right] + \frac{j_{\chi}(j_{\chi} + 1)}{12} \left[c_{4}^{\tau} c_{4}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} v_{12}^{\pm 2} c_{13}^{\tau} c_{13}^{\tau'} \right], \\ R_{\Delta^{\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{18 \left[\frac{q^{2}}{m_{N}^{2}} v_{12}^{\pm 2} c_{3}^{\tau} c_{3}^{\tau'} + v_{12}^{\pm 2} c_{7}^{\tau} c_{7}^{\tau'} \right] + \frac{j_{\chi}(j_{\chi} + 1)}{12} \left[c_{4}^{\tau} c_{4}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} v_{12}^{\pm 2} c_{14}^{\tau'} c_{14}^{\tau'} \right] \\ R_{\Delta^{\prime}}^{\tau\tau'} \left(v_{T}^{\pm 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{j_{\chi}(j_{\chi} + 1)}{3} \left(\frac{q^{2}}{m_{N}^{2}} c_{5}^{\tau} c_{5}^{\tau'} + c_{8}^{\tau} c_{8}^{\tau'} \right) \frac{q^{2}}{m_{N}^{2}}. \end{aligned}$$

- *c_i*: coupling for i-th operator
- j_{χ} : spin of WIMP
- q: transferred momentum
- m_N : mass of nucleon
- v_T[⊥]: WIMP incoming velocity
 perpendicular to the direction of q

- Scattering amplitude: $\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\Sigma_{spins}|M|^{2} \equiv \Sigma_{k}\Sigma_{\tau=0,1}\Sigma_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\perp^{2}},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau},c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$
- Differential cross section : $\frac{d\sigma}{dE_R} = \frac{1}{10^6} \frac{2m_N}{4\pi} \frac{c^2}{v^2} \left[\frac{1}{2j_{\chi}+1} \frac{1}{2j_N+1} \Sigma_{spin} |M|^2 \right]$

• Differential rate :
$$\frac{dR}{dE_R} = N_T \int_{v_{min}}^{v_{esv}} \frac{\rho_{\chi}}{m_{\chi}} v \frac{d\sigma}{dE_R} f(v) dv$$

• With
$$E_R = \frac{\mu_{\chi N}^2 v^2}{m_N}$$
, $v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{\chi N}} + \delta \right|$

DD event rate

• DD event rate

$$R_{DD} = M\tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} \int du f(u) u \Sigma_T N_T \int_{E_{R,th}}^{2\mu_{\chi T}^2 u^2 / m_T} dE_R \zeta_{exp} \frac{d\sigma_T}{dE_R}$$

- $M\tau_{exp}$: exposure
- $E_{R,th}$: experimental energy threshold
- ζ_{exp} : experimental features such as quenching, resolution, efficiency, etc.

•
$$R_{DD} = \int_0^{u_{esc}} f(u) H_{DD}(u)$$

 $H_{DD}(u) = u M \tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} \Sigma_T N_T \int_{E_{R,th}}^{2\mu_{\chi T}^2 u^2 / m_T} dE_R \zeta_{exp} \frac{d\sigma_T}{dE_F}$

Capture rate

• Capture rate

$$C_{\odot} = \frac{\rho_{\chi}}{m_{\chi}} \int du f(u) \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2} \, \Sigma_{T} \, \rho_{T}(r) \, \Theta \left(u_{T}^{C-max} - u \right) \, \int_{m_{\chi} \, u^{2} \, /2}^{2\mu_{\chi T}^{2} \, w^{2} \, /m_{T}} dE_{R} \, \frac{d\sigma_{T}}{dE_{R}}$$

- ρ_T : the number of density of target
- r: distance from the center of the Sun for Standard Solar Model AGSS09ph
- *u*: DM velocity asymptotically far away from the Sun
- $v_{esc}(r)$: escape velocity at distance r
- $w^2(r) = u^2 + v_{esc}^2(r)$
- Neutrino Telescope (NT):
 - the neutrino flux from the annihilation of WIMPs captured in the Sun
 - DM annihilations into $b\overline{b}$

Capture rate

• with assumption of equilibrium between capture and annihilation: $\Gamma_{\odot} = C_{\odot}/2$

•
$$C_{\odot} = \int_{0}^{u^{c-max}} du f(u) H_{C}(u)$$

 $H_{C} = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2} \, \Sigma_{T} \, \rho_{T}(r) \, \Theta \left(u_{T}^{C-max} - u \right) \int_{m_{\chi}}^{2\mu_{\chi T}^{2} \, w^{2} \, /m_{T}} dE_{R} \frac{d\sigma_{T}}{dE_{R}}$

• $u_T^{C-max} = v_{esc}(r) \sqrt{\frac{4m_{\chi}m_T}{(m_{\chi}-m_T)^2}}$: maximum WIMP speed for capture possible

Model independent method

- Scattering count rate: $R \sim \int dv H(v) f(v)$ velocity distribution
- Two parts of interaction and velocity distribution
 - needs to avoid uncertainty
 - interaction: include all possible interaction types
 - velocity distribution: halo independent approaches
- Model independent method: the most general scenarios

Bracketing DD exclusion plots

- Possible all interactions
 - Single coupling interactions
 - Interferences between p-n, operators, short-long range interactions
- Subspaces
 - $[c_1, c_3, \alpha_1, \alpha_3], [c_{11}, c_{12}, c_{15}, \alpha_{11}, \alpha_{12}, \alpha_{15}]$
 - $[c_4, c_5, c_6, \alpha_4, \alpha_5, \alpha_6], [c_8, c_9, \alpha_8, \alpha_9]$
 - $[c_7, \alpha_7], [c_{10}, \alpha_{10}], [c_{13}, \alpha_{13}], [c_{14}, \alpha_{14}]$

S. Kang et al., astropartphys.2023.102854

- WIMP velocity distribution as Maxwellian: $f_{gal}(u) = \frac{1}{\pi^{3/2} v_0^3 N_{esc}} e^{-u^2/v_0^2} \Theta(u_{esc} - u)$
 - *u*: WIMP velocity in Galactic rest frame
 - v_0 : Galactic rotational velocity
 - Θ: Heaviside step function
 - *u_{esc}*: Escape velocity
 - $N_{esc} = \operatorname{erf}(z) 2ze^{-z^2}/\pi^{1/2}$
 - $z^2 = u_{esc}^2 / v_0^2$
- In laboratory frame : $f(v_T, t) = \frac{1}{N_{esc}} \left(\frac{3}{2\pi v_{rms}^2}\right)^{3/2} e^{-\frac{3|v_T + v_E|^2}{2v_{rms}^2}} \Theta(u_{esc} - |v_T + v_E(t)|)$ • $N_{esc} = \operatorname{erf}(z) - 2ze^{-z^2}/\pi^{1/2}$ • $z^2 = 3u_{esc}^2/(2v_{rms}^2)$ • $v_{rms} = \sqrt{\frac{3}{2}}v_0 \cong 270 \text{ km/s}$

- Halo independent approach with arbitrary speed distribution, f(u)
 - The only constraint: $\int_{u=0}^{u_{max}} f(u) du = 1$
- Direct detection experiments have a threshold $u > u_{th}^{DD}$
 - Due to the energy threshold of experimental detectors
- Capture in the Sun is favored for low WIMP speeds $u < u_T^{C-max}$
- In order to cover full speed range: combine DD and capture

- Considering one effective coupling (c_i) at a time:
 - $R_{exp}(c_i^2) = \int du f(u) H_{exp}(c_i^2, u) \leq R_{max}$
 - R_{max} : corresponding maximum experimental bound
- Using relation : $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$
 - $H(c_{i,max}^2(u), u) = R_{max}$
 - $c_{i,max}^2(u) = \frac{R_{max}}{H(c_i=1,u)}$
 - $c_{i,max}(u)$: upper limit on c_i at single speed stream u

•
$$R_{exp}(c_i^2) = \int du f(u) H_{exp}(c_i^2, u) \leq R_{max}$$

• $R_{exp} = \int_0^{u_{max}} du f(u) H(c_i^2, u)$
 $= \int_0^{u_{max}} du f(u) \frac{c_i^2}{c_{i,max}^2(u)} H(c_{i,max}^2(u), u)$
 $= \int_0^{u_{max}} du f(u) \frac{c_i^2}{c_{i,max}^2(u)} R_{max} \leq R_{max}$

• upper limit on c_i over whole streams:

$$c_i^2 \leq \left[\int_0^{u_{max}} du \ \frac{f(u)}{c_{i,max}^2(u)}\right]^{-1}$$

- $c_* = c_{max}^{NT}(\tilde{u}) = c_{max}^{DD}(\tilde{u})$: halo independent limit
- \tilde{u} : intersection speed of NT and DD

U

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011 u_{max}

• Intersection:

$$(c^{NT})^{2}_{max}(u) \leq c^{2}_{*} \text{ for } 0 \leq u \leq \tilde{u}$$

$$(c^{DD})^{2}_{max}(u) \leq c^{2}_{*} \text{ for } \tilde{u} \leq u \leq u_{max}$$

$$c^{2} \leq c^{2}_{*} \left[\int_{0}^{\tilde{u}} du f(u) \right]^{-1} = \frac{c^{2}_{*}}{\delta}$$

$$c^{2} \leq c^{2}_{*} \left[\int_{\tilde{u}}^{u_{max}} du f(u) \right]^{-1} = \frac{c^{2}_{*}}{1-\delta} c_{max}$$

$$\delta = \int_{0}^{\tilde{u}} du f(u)$$

$$c^{2} \leq 2c^{2}_{*} (\delta = 1/2)$$

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011 u_{max}

U

• If
$$(c^{DD})_{max}^{2}(u) > c_{*}^{2}$$
 at $u = u_{max}$:
 $c^{2} \leq c_{*}^{2} \left[\int_{0}^{\widetilde{u}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{\delta}$
 $c^{2} \leq (c^{DD})_{max}^{2}(u_{max}) \left[\int_{\widetilde{u}}^{u_{max}} du f(u) \right]^{-1}$
 $= \frac{(c^{DD})_{max}^{2}(u_{max})}{1-\delta}$
 $c^{2} \leq (c^{DD})_{max}^{2}(u_{max}) + c_{*}^{2}$

Capture

- DD

ũ

и

• Sensitive to u_{max}

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011 u_{max}

• If $u_{th}^{DD} > u_{max}$: $c^2 \leq (c^{NT})_{max}^2(u_{max})$

• Sensitive to u_{max}

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011

- Repeat by combining each DD to NT
 - 1: NT and XENON 1T
 - 2: NT and PICO- $60(C_3F_8)$
 - 3: NT and PICO-60(CF₃I)
- Halo independent limit: the most constraining one

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011

 10^{0}

10-

10-

 m_{χ} (GeV)

10

 10^{3}

 c_8^p

104

- Spin independent
 - 0_{1,3,11,12,15}
 - W_M , $W_{\Phi^{\prime\prime}}$
 - Enhanced for heavy targets

op	erator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	op	perator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$
	1	$M(q^0)$	-		3	$\Phi''(q^4)$	$\Sigma'(q^2)$
	4	$\Sigma^{\prime\prime}(q^0),\!\Sigma^\prime(q^0)$	-		5	$\Delta(q^4)$	$M(q^2)$
	6	$\Sigma^{\prime\prime}(q^4)$	-		7	-	$\Sigma'(q^0)$
	8	$\Delta(q^2)$	$M(q^0)$		9	$\Sigma'(q^2)$	-
	10	$\Sigma^{\prime\prime}(q^2)$	-		11	$M(q^2)$	-
	12	$\Phi^{\prime\prime}(q^2), ilde{\Phi}^\prime(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$		13	$ ilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
	14	-	$\Sigma'(q^2)$		15	$\Phi''(q^6)$	$\Sigma'(q^4)$

- Spin dependent
 - O_{4,5,6,7,8,9,10,13,14}
 - $W_{\Sigma''}$, $W_{\Sigma'}$: directly coupling to spin
 - W_{Δ} : related to angular momentum
 - $W_{\widetilde{\Phi}'}$: spin larger than 1/2

operat	or	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	o	perator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$
1		$M(q^0)$	-		3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4		$\Sigma^{\prime\prime}(q^0),\!\Sigma^\prime(q^0)$	-]	5	$\Delta(q^4)$	$M(q^2)$
6		$\Sigma^{\prime\prime}(q^4)$	-		7	-	$\Sigma'(q^0)$
8		$\Delta(q^2)$	$M(q^0)$		9	$\Sigma'(q^2)$	-
10		$\Sigma^{\prime\prime}(q^2)$	-		11	$M(q^2)$	-
12		$\Phi^{\prime\prime}(q^2), ilde{\Phi}^\prime(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$		13	$ ilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14		-	$\Sigma'(q^2)$		15	$\Phi''(q^6)$	$\Sigma'(q^4)$

- If $(c^{DD})^2_{max}(u) > c_*^2$ at $u = u_{max} : c^2 \le (c^{DD})^2_{max}(u_{max}) + c_*^2$
- If $u_{th}^{DD} > u_{max}$: $c^2 \le (c^{NT})_{max}^2(u_{max})$
- u_{max} : 780 km/s \rightarrow 8000 km/s
- Effect of large u_{max} is mild: factor less than 2

F. Ferrer et al. JCAP09(2015)052 S. Kang et al. JCAP03(2023)011

• Relaxing factor

$$r_f^2 = \frac{2c_*^2}{\left(c_{SHM}^{exp}\right)^2} = 2c_*^2 \int_0^{u_{max}} du \, \frac{f_M(u)}{(c^{exp})_{max}^2(u)} = 2c_*^2 < \frac{1}{(c^{exp})_{max}^2} > \cong 2c_*^2 < \frac{1}{(c^{exp})_{max}^2} >_{bulk}$$

$$\int_{bulk} du f_M(u) \approx 0.8$$

- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u

S. Kang et al. JCAP03(2023)011

neutron

101

10²

 $r_f^2 \simeq 2c_*^2 \left\langle \frac{1}{(c^{\exp})_{\max}^2} \right\rangle_{\text{bul}}$

m_x (GeV)

10³

- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u

S. Kang et al. JCAP03(2023)011

104

 $c_7^n, m_y = 1000 \text{ GeV}$

— Pico-60 (C₃F₈)

10²

u (km/s)

- small or large mass range
 - outside the bulk of Maxwellian
 - smooth dependence on u
- intermediate range (10 ~ 200 GeV)
 - inside the bulk of Maxwellian
 - steep dependence on u

S. Kang et al. JCAP03(2023)011

 $r_f^2 \simeq 2c_*^2 \left\langle \frac{1}{(c^{\exp})_{\max}^2} \right\rangle_{\text{bulk}},$

- small relaxing factors
 - $O_{4,7}$: SD with no q suppression
 - $O_{9,10,14}$: SD with q^2 suppression
 - O_6 : SD with q^4 suppression

S. Kang et al. JCAP03(2023)011

- Velocity dependent operators(07,14)
 - small relaxing factor
 - velocity dependence \rightarrow weaker limit

operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	$\begin{array}{c} 10^{3} \\ \hline \\ 0_{3} \\ \hline \\ 0_{3} \\ \hline \\ 0_{10} \\ \hline \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$	$\begin{bmatrix} 0_{4} & 0_{11} \\ 0_{5} & 0_{12} \\ 0_{6} & 0_{13} \end{bmatrix}$	$\begin{array}{c} \hline \\ \hline $
4	$\Sigma^{\prime\prime}(q^0),\!\Sigma^\prime(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$	$0^{7} - 0^{14} - 0^{7} - 0^{14} - 0^{16} - 0^{$	$ = \frac{10^2}{6} \frac{0^7}{0_6} = \frac{0^7}{0_{16}} = \frac{0^7}{0_{$
6	$\Sigma^{\prime\prime}(q^4)$	-	7	-	$\Sigma'(q^0)$	cing fa	et grind
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-		
10	$\Sigma^{\prime\prime}(q^2)$	-	11	$M(q^2)$	-		
12	$\Phi^{\prime\prime}(q^2), ilde{\Phi}^\prime(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$ ilde{\Phi}'(q^4)$	$\Sigma''(q^2)$	proton	l neutron
14	-	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$	10° 10^{1} 10^{2} 10^{3} 10^{4} m_{χ} (GeV)	10° 10^{1} 10^{2} 10^{3} 10 m_{χ} (GeV)

• High relaxing factor: the halo-independent method can weaken the bound

$$r_f^2 = \frac{2c_*^2}{\left(c_{SHM}^{exp}\right)^2} = 2c_*^2 \int_0^{u_{max}} du \frac{f_M(u)}{(c^{exp})_{max}^2(u)} = 2c_*^2 < \frac{1}{(c^{exp})_{max}^2} > \cong 2c_*^2 < \frac{1}{(c^{exp})_{max}^2} >_{bulk}$$

104

Summary

- Halo independent method can be applied to any speed distribution
- Combining results of direct detection experiments and capture in the Sun may provide halo-independent bounds on each couplings
- In most cases the relaxation of halo independent bounds is moderate in low and high m_{χ}
- More moderate values of the relaxation is obtained with c_{SD}^{p}
- High relaxing factor: halo independent method weaken the bounds
 → sensitive on speed distribution