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Modified gravity

The difficulty to fit General Relativity (GR) with other fundamental
interactions may imply that the theory of GR is incomplete
(GR is an effective theory valid below the cut-off scale MPL ∼ 1019 GeV)

Discovery of Gravitational Waves (GWs) and direct measurements of merger
events of compact binaries open up a new era of precision tests of gravity

Such tests can complement constraints from Cosmology, etc.

A particularly effective approach to probe extensions of GR using
observational data is the use of effective models

Among effective modifications of GR, higher curvature terms are expected to
appear in extensions of Einstein Gravity (such as string theory)

Among them, Horndeski’s theory is the most general scalar-tensor theory

[e.o.m 2nd-order in 4 d spacetime ⇒ no ghost modes]

(examples: quintessence, f (ϕ)R gravity, f (R) gravity)

At the level of e.o.m, the simplest example of Horndeski’s theory containing
higher-curvature terms is the dilatonic Einstein-Gauss-Bonnet (dEGB) theory
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Possible probes of the dEGB scenario

We have no direct probe of the Universe expansion rate, composition or
reheating temperature before Big Bang Nucleosynthesis (BBN)

However, an understanding of the present Universe cannot avoid the inclusion
of Inflation, Dark Matter (DM), Baryon asymmetry, etc.

All such events that take place before BBN can be used to shed light on
physics beyond Standard GR

On the other hand, GW data from Black Hole (BH) or Neutron Star (NS)
binary mergers in the late Universe can also constrain such scenarios

dEGB theory has been extensively studied in many of such realizations
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Possible probes of the dEGB scenario: WIMPs

Cold Dark Matter (CDM): provides ∼25% of the energy density of the
present Universe

Standard Model (SM) of particle physics cannot explain CDM

Weakly Interacting Massive Particles (WIMPs): one of the most popular
candidates for CDM; [mass in GeV – TeV scale]

Decoupled from thermal bath in the early Universe before BBN

We study the thermal decoupling of WIMP DM in the early Universe under
modified dEGB Cosmology and use the WIMP DM search results to probe the
dEGB scenario

Constraints on dEGB from WIMP DM indirect searches are nicely
complementary to late-time constraints from compact binary mergers
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Dilatonic Einstein-Gauss-Bonnet (dEGB) theory

dEGB action:

S =

∫
M

√
−g d4x

[
R

2κ
− 1

2
∇µϕ∇µϕ− V (ϕ) + f (ϕ)R2

GB + Lrad
m

]
κ ≡ 8πG = 1/M2

PL; g = det(gµν);
R ≡ scalar curvature of the spacetime M (3+1 d)

ϕ : scalar field (dilaton field); V (ϕ) : scalar field potential

R2
GB = R2 − 4RµνR

µν + RµνρσR
µνρσ (Gauss-Bonnet term)

f (ϕ) : describes the coupling between ϕ and the Gauss-Bonnet term

Lrad
m : interactions of radiation and matter fields

If f (ϕ) is constant, the Gauss-Bonnet term (in 3+1 d) reduces to a surface
term and does not contribute to the e.o.m

f (ϕ) in principle can be arbitrary
− an exponential or a power law form is frequently adopted
− the two forms can be connected by field redefinition

We adopt: f (ϕ) = αeγϕ [α and γ have both signs]
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dEGB theory

S =

∫
M

√
−g d4x

[
R

2κ
− 1

2
∇µϕ∇µϕ− V (ϕ) + f (ϕ)R2

GB + Lrad
m

]
(R2

GB = R2 − 4RµνR
µν + RµνρσR

µνρσ)

Equations of motion:

(1) □ϕ− V ′ + f ′R2
GB = 0 □ = ∇µ∇µ ; V ′ = ∂V /∂ϕ ; f ′ = ∂f /∂ϕ

(2) Rµν − 1

2
gµνR = κ

(
T {ϕ+GB}

µν + T rad
µν

)
≡ κT tot

µν

(Additional terms are moved to the r.h.s to get the familiar form of the Einstein Equation)

Energy-momentum tensor for radiation: T rad
µν = −2

δLrad
m

δgµν + Lrad
m gµν

T
{ϕ+GB}
µν = Tϕ

µν + TGB
µν (for notation purpose)

Tϕ
µν = ∇µϕ∇νϕ−

(
1

2
∇ρϕ∇ρϕ+ V

)
gµν

TGB
µν = 4 [R∇µ∇ν f (ϕ)− gµνR□f (ϕ)]− 8 [Rν

ρ∇ρ∇µf (ϕ) + Rµ
ρ∇ρ∇ν f (ϕ)

−Rµν□f (ϕ)− gµνR
ρσ∇ρ∇σf (ϕ) + Rµρνσ∇ρ∇σf (ϕ)]
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Cosmology in dEGB theory

S =

∫
M

√
−g d4x

[
R

2κ
− 1

2
∇µϕ∇µϕ− V (ϕ) + f (ϕ)R2

GB + Lrad
m

]
We consider the spatially flat FLRW metric:

ds2 = −dt2 + a2(t) δij dx
idx j

⇒ Equations of motion depend only on time (t)

Energy density: ρI = −TI
0
0, Pressure: pI δ

i
j = TI

i
j , [I ≡ {ϕ+GB}, rad]

Friedmann equations:

H2 =
κ

3

(
ρ{ϕ+GB} + ρrad

)
≡ κ

3
ρtot

Ḣ = −κ

2

[
(ρ{ϕ+GB} + p{ϕ+GB}) + (ρrad + prad)

]
≡ −κ

2
(ρtot + ptot)

ϕ̈+ 3Hϕ̇+ V ′ − f ′R2
GB = 0 where R2

GB = 24H2(Ḣ + H2)

“dot”⇒ d/dt , “prime”⇒ d/dϕ

Expansion rate of the Universe: H = ȧ/a

ρrad ∼ g∗T
4 , [⇒ Hrad ∼ √

g∗ T
2] (T ≡ temperature of the Universe)

prad = 1
3
ρrad

7



Cosmology in dEGB theory

S =

∫
M

√
−g d4x

[
R

2κ
− 1

2
∇µϕ∇µϕ− V (ϕ) + f (ϕ)R2

GB + Lrad
m

]
We consider the spatially flat FLRW metric:

ds2 = −dt2 + a2(t) δij dx
idx j

⇒ Equations of motion depend only on time (t)

Energy density: ρI = −TI
0
0, Pressure: pI δ

i
j = TI

i
j , [I ≡ {ϕ+GB}, rad]

Friedmann equations:

H2 =
κ

3

(
ρ{ϕ+GB} + ρrad

)
≡ κ

3
ρtot
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Cosmology in dEGB theory

ρ{ϕ+GB} ≡ ρϕ + ρGB, p{ϕ+GB} ≡ pϕ + pGB (for notation purposes)

ρϕ =
1

2
ϕ̇2 + V (ϕ), pϕ =

1

2
ϕ̇2 − V (ϕ)

ρGB = −24ḟ H3 = −24f ′ϕ̇H3

pGB = 8
(
f ′′ϕ̇2 + f ′ϕ̈

)
H2 + 16f ′ϕ̇H(Ḣ + H2) = 8

d(f ′ϕ̇H2)

dt
− 2

3
ρGB

H2 =
κ

3

(
1

2
ϕ̇2 + V − 24f ′ϕ̇H3 + ρrad

)
Ḣ = −κ

2

(
ϕ̇2 + 8

d(f ′ϕ̇H2)

dt
− 8f ′ϕ̇H3 + ρrad + prad

)
ϕ̈+ 3Hϕ̇+ V ′ − 24f ′H2(Ḣ + H2) = 0

Friedmann
Equations
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Solutions of Friedmann equations in dEGB theory

We assume V (ϕ) = 0 to reduce the parameter space
(To avoid early accelerated expansion before matter-radiation equivalence V (ϕ)

should be zero or close to zero at Big Bang Nucleosynthesis (BBN))

Coupling f (ϕ) = αeγϕ [α and γ have both signs]

Dynamics is controlled by derivative(s) of f (ϕ)

f ′(ϕ) = 0 (α and/or γ = 0)

⇒ No dEGB ; only kination [ϕ̇ ∼ a−3 or ρϕ(=
1
2
ϕ̇2) ∼ a−6]

Unit convention: [κ = 8πG = 1 = c] ⇒ α (in km2), γ (dimension less)
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Solutions of Friedmann equations in dEGB theory

We convert time (t) → temperature (T ) and solve the cosmological
equations in terms of T

The relation between t and T is obtained using the conservation of entropy
(sa3 = constant) :

dT

dt
= −

H T

(1 +
1

3
d ln g∗s/d lnT )

, s ∼ g∗sT
3

[sa3 = constant ⇒ a ∼ T−1]

BBN is the earliest process in Cosmology that provides a successful
confirmation of Standard Cosmology
⇒ any departure from Standard Cosmology for T ≤ TBBN ≃ 1 MeV is

strongly constrained

We solve the Friedmann equations by setting initial conditions at
T = TBBN = 1 MeV and evolving the variables towards higher T
and see how cosmology is modified at the early Universe
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Solutions of Friedmann equations in dEGB theory

H2 =
κ

3

(
1

2
ϕ̇2 − 24f ′ϕ̇H3 + ρrad

)
Ḣ = −

κ

2

(
ϕ̇2 + 8

d(f ′ϕ̇H2)

dt
− 8f ′ϕ̇H3 + ρrad + prad

)
ϕ̈+ 3Hϕ̇− 24f ′H2(Ḣ + H2) = 0

V = 0

f (ϕ) = αeγϕ

Parameter space:

α, γ, ϕBBN and ϕ̇BBN

Contribution of ρϕ(TBBN) =
1
2
ϕ̇2
BBN to ρtot at BBN is constrained by the

effective number of neutrino flavors Neff ≤ 2.99 ± 0.17

⇒ ρϕ(TBBN) ≲ 3× 10−2ρBBN, [ρBBN ≡ radiation energy density at BBN]

ϕ (hence ϕBBN) appears in Friedmann equations only through f (ϕ) (= αeγϕ)

Define α̃ = α eγϕBBN ; [⇒ f (ϕ)BBN = α̃ , f ′(ϕ)BBN = α̃γ , f ′′(ϕ)BBN = α̃γ2]

α̃ invariant under ϕ′
BBN = ϕBBN + ϕ0, with α′ = α e−γϕ0 , γ′ = γ

We show our results in terms of α̃ and adopting ϕBBN = 0
[The results are independent of ϕBBN]

HBBN is obtained from ϕBBN & ϕ̇BBN by solving the 1st Eqn. (cubic in HBBN)

Using ϕ̇BBN, ϕBBN, HBBN the Friedmann equations are solved to obtain the
solutions ϕ, ϕ̇, H, at T > TBBN
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Ḣ = −

κ

2

(
ϕ̇2 + 8

d(f ′ϕ̇H2)

dt
− 8f ′ϕ̇H3 + ρrad + prad

)
ϕ̈+ 3Hϕ̇− 24f ′H2(Ḣ + H2) = 0
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Numerical solutions of Friedmann equations

ρϕ(TBBN) = 0 ⇒ Standard Cosmology in the absence of the GB term
(i.e. when α̃ and/or γ = 0)

Energy density vs. temperature:

α̃ = −1 km2, γ = 1 α̃ = 1 km2, γ = 1

[H2 = κ
3
ρtot]

(time →)

The GB term plays an important role on the scalar field dynamics
⇒ reduces (enhances) the expansion rate H compared to the Standard one

N.B.: only ρtot and ρrad represent physical energy densities

while ρϕ and ρGB are shown for illustrative purposes

(ρGB can be negative and is plotted in absolute value)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]
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(i.e. when α̃ and/or γ = 0)

Energy density vs. temperature:

α̃ = −1 km2, γ = 1 α̃ = 1 km2, γ = 1

[H2 = κ
3
ρtot]

(time →)

The GB term plays an important role on the scalar field dynamics
⇒ reduces (enhances) the expansion rate H compared to the Standard one

N.B.: only ρtot and ρrad represent physical energy densities

while ρϕ and ρGB are shown for illustrative purposes

(ρGB can be negative and is plotted in absolute value)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813] 12



Numerical solutions of Friedmann equations

ρϕ(TBBN) = 3× 10−2ρBBN (max.), α̃ = ±1 km2, γ = ±1 [H2 = κ
3
ρtot]

no dEGB
⇒ f ′ = 0
(α̃γ = 0)

⇒kination
(ρ ∼ T 6)

(time →)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]
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Numerical solutions of Friedmann equations

The GB term plays an important role on the kination dynamics:

slows down (speeds up) the evolution of the scalar field

reduces (enhances) the expansion rate H

H is larger (smaller) at high T when ρϕ (= 1
2
ϕ̇2) evolves with T faster

(slower) than kination (ρϕ ∼ T 6)
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Physics of WIMP DM in dEGB modified cosmology
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WIMP thermal freeze-out and relic density

(time→)

WIMP in Standard Cosmology

ΓA(= nχ⟨σv⟩) : Rate of WIMP annihilation to SM particles

H(T ) : Expansion rate of the Universe

Evolution of WIMP comoving number density (Yχ = nχ/s):

dYχ

dx
= − β s

H(x) x
⟨σ v⟩

(
Y 2

χ − (Y eq
χ )2

)
, x = mχ/T

mχ ≡ WIMP mass ; s ∼ g∗sT 3 (entropy density) ; β = (1 +
1

3
d ln g∗s/d lnT )

Equilibrium comoving density: Y eq
χ ∼ x3/2exp(−x)

WIMP relic density: Ωχh
2 =

ρχ
ρc

h2 ≃ 2.8×
( mχ

GeV

)
Y 0

χ ; Ωχh
2 ∝ 1/⟨σ v⟩

Observation: Ωχh2
∣∣
obs

= 0.12
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WIMP thermal freeze-out and relic density

In Standard Cosmology, ⟨σv⟩f ≃ 3× 10−26cm3s−1 gives Ωχh
2 = 0.12

In dEGB cosmology H gets modified
during WIMP freeze-out

⇒ affects Ωχh
2

⇒ ⟨σv⟩f different from ⟨σv⟩standardf

so that Ωχh
2 = 0.12

[H2 = κ
3
ρtot]

(time →)
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Enhancement factor for the expansion rate

“Enhancement of the expansion rate”: A(T ) ≡ H(T )/Hrad(T )

Standard Cosmology ⇒ A = 1

@ T = 50 GeV (decoupling temperature of TeV WIMP)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]

In order to get Ωχh
2 = 0.12:

A > 1 ⇒ ⟨σv⟩f > ⟨σv⟩standardf A < 1 ⇒ ⟨σv⟩f < ⟨σv⟩standardf
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WIMP annihilation cross-section ⟨σv⟩

In general ⟨σv⟩ can be a function of T

Expansion of ⟨σv⟩ in powers of v 2/c2 ≪1:

⟨σv⟩ ≃ a+ b

(
T

mχ

)
[a → s-wave ; b → p-wave]

We assume s-wave annihilation

⇒ ⟨σv⟩ independent of T
⇒ ⟨σv⟩f = ⟨σv⟩0 (today)

19



Constraints on WIMP annihilation from Indirect Detection searches

Indirect Detection: searches for γ-ray/ν’s/e+/p̄ signals produced by WIMP
annihilations in the late Universe (e.g., in the Galaxy, in local dwarf galaxies)

χχ → bb̄, τ+τ−,W+W−, ... ⇒ γ-rays, e±, p(p̄), ν(ν̄)

Experiments: Fermi-LAT (γ-rays from dwarf galaxies, Galactic Center) ;

AMS (e+, p̄ in cosmic-rays) ; CMB measurements

[Leane et al. (PRD 98, 023016 (2018))]

The Indirect Detection upper-limit is obtained combining all possible SM
annihilation channels and different existing experimental observations
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Constraints on WIMP annihilation from Indirect Detection searches

⟨σv⟩relic : gives Ωχh
2 = 0.12

⟨σv⟩ID : upper-limit on ⟨σv⟩ from Indirect Detection

⟨σv⟩relic/⟨σv⟩ID > 1 ⇒ Disallowed WIMPs
⟨σv⟩relic/⟨σv⟩ID ≤ 1 ⇒ Allowed WIMPs

In Standard Cosmology mχ ≲ 20 GeV is disallowed by existing searches

In modified cosmology ⟨σv⟩relic is different
21



dEGB parameter space favoured/disfavoured by WIMP searches

left-column:

ρϕ(TBBN) = 0

right-column:

ρϕ(TBBN) = 3 × 10−2ρBBN
(max.)

Colored regions ⇒
⟨σv⟩relic/⟨σv⟩ID ≤ 1

(favoured)

White regions ⇒
⟨σv⟩relic/⟨σv⟩ID > 1

(disfavoured)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813] 22



Constraints on dEGB from Black Hole (BH) & Neutron Star (NS) mergers

Near a BH or a NS the density of ϕ field in the dEGB scenario is distorted
compared to its background value

⇒ leads to a local departure from standard GR that can modify the
Gravitational Wave (GW) signal from BH and NS binary mergers

⇒ GW data (taken by LIGO-Virgo) from BH and NS binary mergers can
constrain dEGB

S =

∫
M

√
−g d4x

[
R

2κ
−

1

2
∇µϕ∇µϕ+ f (ϕ)R2

GB + Lrad
m

]

|f ′ (ϕLate) | ≲
√
8π (1.18)2 km2

[Lyu et al. (PRD 105, 064001 (2022))]

f (ϕ) = αeγϕ

In our notation:

|α̃γeγ(ϕLate−ϕBBN)| = |α̃γeγ
ϕ̇BBN
HBBN | ≤

√
8π (1.18)2 km2 α̃ = αeγϕBBN
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Complementarity between GW and WIMP search constraints

left-column:

ρϕ(TBBN) = 0

right-column:

ρϕ(TBBN) = 3×10−2ρBBN
(max.)

Colored regions ⇒
⟨σv⟩relic/⟨σv⟩ID ≤ 1

(favoured by WIMP)

White regions ⇒
⟨σv⟩relic/⟨σv⟩ID > 1

(disfavoured by WIMP)

Hatched regions ⇒
GW exclusion

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813] 24



Summary

We study cosmologies in a dilatonic Einstein-Gauss-Bonnet (dEGB) scenario
[GB term is non-minimally coupled to a scalar field with vanishing potential]

Standard Cosmology is modified irrespective of the initial conditions on
ϕ and ϕ̇ (even with ϕini and ϕ̇ini = 0), if the coupling f (ϕ) is not constant

In dEGB cosmology, WIMP annihilation cross-section ⟨σv⟩ required to predict
correct relic density is modified compared to its standard value

⇒ ⟨σv⟩ can be larger than the upper-limit obtained from Indirect Detection

⇒ dEGB parameter space can be favoured/disfavoured by WIMP searches

WIMP mass mχ ≲ 20 GeV is inconsistent with Standard Cosmology

In dEGB scenario, mχ ≲ 20 GeV can be accommodated

WIMP search constraints on the dEGB parameter space are nicely
complementary to late-time constraints from compact binary mergers

⇒ It could be interesting to use other early Cosmology processes to probe the
dEGB scenario
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Thank You
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Backup slides
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Continuity equations

Continuity equation of energy-momentum tensor:

ρ̇tot + 3H(ρtot + ptot) = 0

ρ̇rad + 3H(ρrad + prad) = 0

ρ̇{ϕ+GB} + 3H
(
ρ{ϕ+GB} + p{ϕ+GB}

)
= 0
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Equation of states

ρϕ(TBBN) = 0, α̃ = ±1 km2, γ = 1

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]
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Equation of states

ρϕ(TBBN) = 3× 10−2ρBBN (max.), α̃ = ±1 km2, γ = ±1
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