WIMPs in Dilatonic Einstein-Gauss-Bonnet Cosmology

Arpan Kar

Center for Quantum Spacetime (CQUeST), Sogang University, Seoul, South Korea

$$
\text { Based on: arXiv: } 2303.05813 \text { (2023) (accepted in JCAP) }
$$

Anirban Biswas, A. Kar, Bum-Hoon Lee, Hocheol Lee, Wonwoo Lee, Stefano Scopel, Liliana Velasco-Sevilla, Lu Yin

Workshop on Cosmology and Quantum Space Time (CQUeST 2023), Jeonju, Korea

$$
\text { July } 31 \text { - August 4, } 2023
$$

Modified gravity

- The difficulty to fit General Relativity (GR) with other fundamental interactions may imply that the theory of GR is incomplete (GR is an effective theory valid below the cut-off scale $M_{P L} \sim 10^{19} \mathrm{GeV}$)
- Discovery of Gravitational Waves (GWs) and direct measurements of merger events of compact binaries open up a new era of precision tests of gravity
- Such tests can complement constraints from Cosmology, etc.

Modified gravity

- The difficulty to fit General Relativity (GR) with other fundamental interactions may imply that the theory of GR is incomplete (GR is an effective theory valid below the cut-off scale $M_{P L} \sim 10^{19} \mathrm{GeV}$)
- Discovery of Gravitational Waves (GWs) and direct measurements of merger events of compact binaries open up a new era of precision tests of gravity
- Such tests can complement constraints from Cosmology, etc.
- A particularly effective approach to probe extensions of GR using observational data is the use of effective models

Modified gravity

- The difficulty to fit General Relativity (GR) with other fundamental interactions may imply that the theory of GR is incomplete (GR is an effective theory valid below the cut-off scale $M_{P L} \sim 10^{19} \mathrm{GeV}$)
- Discovery of Gravitational Waves (GWs) and direct measurements of merger events of compact binaries open up a new era of precision tests of gravity
- Such tests can complement constraints from Cosmology, etc.
- A particularly effective approach to probe extensions of GR using observational data is the use of effective models
- Among effective modifications of GR, higher curvature terms are expected to appear in extensions of Einstein Gravity (such as string theory)

Modified gravity

- The difficulty to fit General Relativity (GR) with other fundamental interactions may imply that the theory of GR is incomplete (GR is an effective theory valid below the cut-off scale $M_{P L} \sim 10^{19} \mathrm{GeV}$)
- Discovery of Gravitational Waves (GWs) and direct measurements of merger events of compact binaries open up a new era of precision tests of gravity
- Such tests can complement constraints from Cosmology, etc.
- A particularly effective approach to probe extensions of GR using observational data is the use of effective models
- Among effective modifications of GR, higher curvature terms are expected to appear in extensions of Einstein Gravity (such as string theory)
- Among them, Horndeski's theory is the most general scalar-tensor theory [e.o.m 2nd-order in 4 d spacetime \Rightarrow no ghost modes] (examples: quintessence, $f(\phi) R$ gravity, $f(R)$ gravity)

Modified gravity

- The difficulty to fit General Relativity (GR) with other fundamental interactions may imply that the theory of GR is incomplete (GR is an effective theory valid below the cut-off scale $M_{P L} \sim 10^{19} \mathrm{GeV}$)
- Discovery of Gravitational Waves (GWs) and direct measurements of merger events of compact binaries open up a new era of precision tests of gravity
- Such tests can complement constraints from Cosmology, etc.
- A particularly effective approach to probe extensions of GR using observational data is the use of effective models
- Among effective modifications of GR, higher curvature terms are expected to appear in extensions of Einstein Gravity (such as string theory)
- Among them, Horndeski's theory is the most general scalar-tensor theory [e.o.m 2nd-order in 4 d spacetime \Rightarrow no ghost modes] (examples: quintessence, $f(\phi) R$ gravity, $f(R)$ gravity)
- At the level of e.o.m, the simplest example of Horndeski's theory containing higher-curvature terms is the dilatonic Einstein-Gauss-Bonnet (dEGB) theory

Possible probes of the dEGB scenario

- We have no direct probe of the Universe expansion rate, composition or reheating temperature before Big Bang Nucleosynthesis (BBN)
- However, an understanding of the present Universe cannot avoid the inclusion of Inflation, Dark Matter (DM), Baryon asymmetry, etc.
- All such events that take place before BBN can be used to shed light on physics beyond Standard GR
- On the other hand, GW data from Black Hole (BH) or Neutron Star (NS) binary mergers in the late Universe can also constrain such scenarios
- dEGB theory has been extensively studied in many of such realizations

Possible probes of the dEGB scenario: WIMPs

- Cold Dark Matter (CDM): provides $\sim 25 \%$ of the energy density of the present Universe
- Standard Model (SM) of particle physics cannot explain CDM
- Weakly Interacting Massive Particles (WIMPs): one of the most popular candidates for CDM; [mass in $\mathrm{GeV}-\mathrm{TeV}$ scale]
Decoupled from thermal bath in the early Universe before BBN
- We study the thermal decoupling of WIMP DM in the early Universe under modified dEGB Cosmology and use the WIMP DM search results to probe the dEGB scenario
- Constraints on dEGB from WIMP DM indirect searches are nicely complementary to late-time constraints from compact binary mergers

Dilatonic Einstein-Gauss-Bonnet (dEGB) theory

- dEGB action:

$$
\begin{aligned}
& \quad S=\int_{\mathcal{M}} \sqrt{-g} d^{4} \times\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-V(\phi)+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right] \\
& \kappa \equiv 8 \pi G=1 / M_{P L}^{2} ; \quad g=\operatorname{det}\left(g_{\mu \nu}\right) ; \\
& R \equiv \text { scalar curvature of the spacetime } \mathcal{M}(3+1 \mathrm{~d}) \\
& \phi: \text { scalar field (dilaton field); } \quad V(\phi): \text { scalar field potential } \\
& R_{\mathrm{GB}}^{2}=R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}(\text { Gauss-Bonnet term }) \\
& f(\phi): \text { describes the coupling between } \phi \text { and the Gauss-Bonnet term } \\
& \mathcal{L}_{m}^{\text {rad }}: \text { interactions of radiation and matter fields }
\end{aligned}
$$

Dilatonic Einstein-Gauss-Bonnet (dEGB) theory

- dEGB action:

$$
S=\int_{\mathcal{M}} \sqrt{-g} d^{4} x\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-V(\phi)+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right]
$$

$\kappa \equiv 8 \pi G=1 / M_{P L}^{2} ; \quad g=\operatorname{det}\left(g_{\mu \nu}\right) ;$
$R \equiv$ scalar curvature of the spacetime $\mathcal{M}(3+1 \mathrm{~d})$
ϕ : scalar field (dilaton field); $\quad V(\phi)$: scalar field potential
$R_{\mathrm{GB}}^{2}=R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}$ (Gauss-Bonnet term)
$f(\phi)$: describes the coupling between ϕ and the Gauss-Bonnet term
$\mathcal{L}_{m}^{\text {rad }}$: interactions of radiation and matter fields

- If $f(\phi)$ is constant, the Gauss-Bonnet term (in $3+1 \mathrm{~d}$) reduces to a surface term and does not contribute to the e.o.m
- $f(\phi)$ in principle can be arbitrary
- an exponential or a power law form is frequently adopted
- the two forms can be connected by field redefinition
- We adopt: $f(\phi)=\alpha e^{\gamma \phi} \quad[\alpha$ and γ have both signs]

dEGB theory

$$
\begin{array}{r}
S=\int_{\mathcal{M}} \sqrt{-g} d^{4} x\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-V(\phi)+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right] \\
\left(R_{\mathrm{GB}}^{2}=R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}\right)
\end{array}
$$

Equations of motion:

$$
\text { (1) } \square \phi-V^{\prime}+f^{\prime} R_{\mathrm{GB}}^{2}=0 \quad \square=\nabla_{\mu} \nabla^{\mu} ; V^{\prime}=\partial V / \partial \phi ; f^{\prime}=\partial f / \partial \phi
$$

(2) $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\kappa\left(T_{\mu \nu}^{\{\phi+\mathrm{GB}\}}+T_{\mu \nu}^{\mathrm{rad}}\right) \equiv \kappa T_{\mu \nu}^{\mathrm{tot}}$
(Additional terms are moved to the r.h.s to get the familiar form of the Einstein Equation)
Energy-momentum tensor for radiation: $T_{\mu \nu}^{\mathrm{rad}}=-2 \frac{\delta \mathcal{L}_{m}^{\mathrm{rad}}}{\delta g^{\mu \nu}}+\mathcal{L}_{m}^{\mathrm{rad}} g_{\mu \nu}$

$$
\begin{gathered}
T_{\mu \nu}^{\{\phi+\mathrm{GB}\}}=T_{\mu \nu}^{\phi}+T_{\mu \nu}^{\mathrm{GB}} \quad \text { (for notation purpose) } \\
T_{\mu \nu}^{\phi}=\nabla_{\mu} \phi \nabla_{\nu} \phi-\left(\frac{1}{2} \nabla_{\rho} \phi \nabla^{\rho} \phi+V\right) g_{\mu \nu} \\
T_{\mu \nu}^{\mathrm{GB}}=\begin{array}{c}
4\left[R \nabla_{\mu} \nabla_{\nu} f(\phi)-g_{\mu \nu} R \square f(\phi)\right]-8\left[R_{\nu}{ }^{\rho} \nabla_{\rho} \nabla_{\mu} f(\phi)+R_{\mu}{ }^{\rho} \nabla_{\rho} \nabla_{\nu} f(\phi)\right. \\
\\
\left.-R_{\mu \nu} \square f(\phi)-g_{\mu \nu} R^{\rho \sigma} \nabla_{\rho} \nabla_{\sigma} f(\phi)+R_{\mu \rho \nu \sigma} \nabla^{\rho} \nabla^{\sigma} f(\phi)\right]
\end{array}
\end{gathered}
$$

Cosmology in dEGB theory

$$
S=\int_{\mathcal{M}} \sqrt{-g} d^{4} x\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-V(\phi)+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right]
$$

We consider the spatially flat FLRW metric:

$$
d s^{2}=-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}
$$

\Rightarrow Equations of motion depend only on time (t)
Energy density: $\rho_{I}=-T_{I}{ }_{0}, \quad$ Pressure: $p_{l} \delta^{i}{ }_{j}=T_{I}{ }^{i}{ }_{j}, \quad[I \equiv\{\phi+\mathrm{GB}\}, \mathrm{rad}]$

Cosmology in dEGB theory

$$
S=\int_{\mathcal{M}} \sqrt{-g} d^{4} x\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-V(\phi)+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right]
$$

We consider the spatially flat FLRW metric:

$$
d s^{2}=-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}
$$

\Rightarrow Equations of motion depend only on time (t)
Energy density: $\rho_{I}=-T_{l}{ }^{0}{ }_{0}, \quad$ Pressure: $p_{l} \delta^{i}{ }_{j}=T_{l}{ }^{i}{ }_{j}, \quad[I \equiv\{\phi+\mathrm{GB}\}, \mathrm{rad}]$
Friedmann equations:

$$
\begin{gathered}
H^{2}=\frac{\kappa}{3}\left(\rho_{\{\phi+\mathrm{GB}\}}+\rho_{\mathrm{rad}}\right) \equiv \frac{\kappa}{3} \rho_{\mathrm{tot}} \\
\dot{H}=-\frac{\kappa}{2}\left[\left(\rho_{\{\phi+\mathrm{GB}\}}+p_{\{\phi+\mathrm{GB}\}}\right)+\left(\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right)\right] \equiv-\frac{\kappa}{2}\left(\rho_{\mathrm{tot}}+p_{\mathrm{tot}}\right) \\
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}-f^{\prime} R_{\mathrm{GB}}^{2}=0 \quad \text { where } R_{\mathrm{GB}}^{2}=24 H^{2}\left(\dot{H}+H^{2}\right) \\
\hline \text { "dot" } \Rightarrow d / d t, \text { "prime" } \Rightarrow d / d \phi
\end{gathered}
$$

Expansion rate of the Universe: $H=\dot{a} / a$
$\rho_{\mathrm{rad}} \sim g_{*} T^{4},\left[\Rightarrow H_{\mathrm{rad}} \sim \sqrt{g_{*}} T^{2}\right]$
($T \equiv$ temperature of the Universe)
$p_{\mathrm{rad}}=\frac{1}{3} \rho_{\mathrm{rad}}$

Cosmology in dEGB theory

$$
\begin{gathered}
\rho_{\{\phi+\mathrm{GB}\}} \equiv \rho_{\phi}+\rho_{\mathrm{GB}}, \quad p_{\{\phi+\mathrm{GB}\}} \equiv p_{\phi}+p_{\mathrm{GB}} \quad \text { (for notation purposes) } \\
\rho_{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi), \quad p_{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \\
\rho_{\mathrm{GB}}=-24 \dot{f} H^{3}=-24 f^{\prime} \dot{\phi} H^{3} \\
p_{\mathrm{GB}}=8\left(f^{\prime \prime} \dot{\phi}^{2}+f^{\prime} \ddot{\phi}\right) H^{2}+16 f^{\prime} \dot{\phi} H\left(\dot{H}+H^{2}\right)=8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-\frac{2}{3} \rho_{\mathrm{GB}}
\end{gathered}
$$

Cosmology in dEGB theory

$$
\begin{gathered}
\rho_{\{\phi+\mathrm{GB}\}} \equiv \rho_{\phi}+\rho_{\mathrm{GB}}, \quad p_{\{\phi+\mathrm{GB}\}} \equiv p_{\phi}+p_{\mathrm{GB}} \quad \text { (for notation purposes) } \\
\rho_{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi), \quad p_{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \\
\rho_{\mathrm{GB}}=-24 \dot{f} H^{3}=-24 f^{\prime} \dot{\phi} H^{3} \\
p_{\mathrm{GB}}=8\left(f^{\prime \prime} \dot{\phi}^{2}+f^{\prime} \ddot{\phi}\right) H^{2}+16 f^{\prime} \dot{\phi} H\left(\dot{H}+H^{2}\right)=8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-\frac{2}{3} \rho_{\mathrm{GB}}
\end{gathered}
$$

$$
\begin{gathered}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}+V-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) \\
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0
\end{gathered}
$$

Friedmann Equations

Solutions of Friedmann equations in dEGB theory

- We assume $V(\phi)=0$ to reduce the parameter space (To avoid early accelerated expansion before matter-radiation equivalence $V(\phi)$ should be zero or close to zero at Big Bang Nucleosynthesis (BBN))
- Coupling $f(\phi)=\alpha e^{\gamma \phi} \quad[\alpha$ and γ have both signs]
- Dynamics is controlled by derivative(s) of $f(\phi)$
- $f^{\prime}(\phi)=0 \quad(\alpha$ and $/$ or $\gamma=0)$
\Rightarrow No dEGB ; only kination $\left[\dot{\phi} \sim a^{-3}\right.$ or $\left.\rho_{\phi}\left(=\frac{1}{2} \dot{\phi}^{2}\right) \sim a^{-6}\right]$
- Unit convention: $[\kappa=8 \pi G=1=c] \quad \Rightarrow \alpha$ (in $\left.\mathrm{km}^{2}\right), \gamma$ (dimension less)

Solutions of Friedmann equations in dEGB theory

- We convert time $(t) \rightarrow$ temperature (T) and solve the cosmological equations in terms of T
- The relation between t and T is obtained using the conservation of entropy ($s a^{3}=$ constant) :

$$
\begin{gathered}
\frac{d T}{d t}=-\frac{H T}{\left(1+\frac{1}{3} d \ln g_{* s} / d \ln T\right)}, \quad s \sim g_{* s} T^{3} \\
{\left[s a^{3}=\mathrm{constant} \Rightarrow a \sim T^{-1}\right]}
\end{gathered}
$$

- BBN is the earliest process in Cosmology that provides a successful confirmation of Standard Cosmology
\Rightarrow any departure from Standard Cosmology for $T \leq T_{\text {BBN }} \simeq 1 \mathrm{MeV}$ is strongly constrained
- We solve the Friedmann equations by setting initial conditions at $T=T_{\mathrm{BBN}}=1 \mathrm{MeV}$ and evolving the variables towards higher T and see how cosmology is modified at the early Universe

Solutions of Friedmann equations in dEGB theory

$$
\begin{gathered}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0
\end{gathered}
$$

$$
V=0
$$

$$
f(\phi)=\alpha e^{\gamma \phi}
$$

Parameter space:
$\alpha, \gamma, \phi_{\mathrm{BBN}}$ and $\dot{\phi}_{\mathrm{BBN}}$

Solutions of Friedmann equations in dEGB theory

$$
\begin{array}{cl}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) & V=0 \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) & f(\phi)=\alpha e^{\gamma \phi} \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0 & \text { Parameter space: } \\
\alpha, \gamma, \phi_{\mathrm{BBN}} \text { and } \dot{\phi}_{\mathrm{BBN}}
\end{array}
$$

- Contribution of $\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=\frac{1}{2} \dot{\phi}_{\mathrm{BBN}}^{2}$ to $\rho_{\text {tot }}$ at BBN is constrained by the effective number of neutrino flavors $N_{\text {eff }} \leq 2.99 \pm 0.17$
$\Rightarrow \rho_{\phi}\left(T_{\mathrm{BBN}}\right) \lesssim 3 \times 10^{-2} \rho_{\mathrm{BBN}}, \quad\left[\rho_{\mathrm{BBN}} \equiv\right.$ radiation energy density at BBN]

Solutions of Friedmann equations in dEGB theory

$$
\begin{array}{cl}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) & V=0 \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) & f(\phi)=\alpha e^{\gamma \phi} \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0 & \text { Parameter space: } \\
\alpha, \gamma, \phi_{\mathrm{BBN}} \text { and } \dot{\phi}_{\mathrm{BBN}}
\end{array}
$$

- Contribution of $\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=\frac{1}{2} \dot{\phi}_{\mathrm{BBN}}^{2}$ to ρ_{tot} at BBN is constrained by the effective number of neutrino flavors $N_{\text {eff }} \leq 2.99 \pm 0.17$
$\Rightarrow \rho_{\phi}\left(T_{\mathrm{BBN}}\right) \lesssim 3 \times 10^{-2} \rho_{\mathrm{BBN}}, \quad\left[\rho_{\mathrm{BBN}} \equiv\right.$ radiation energy density at BBN]
- ϕ (hence ϕ_{BBN}) appears in Friedmann equations only through $f(\phi)\left(=\alpha \mathrm{e}^{\gamma \phi}\right)$ Define $\tilde{\alpha}=\alpha e^{\gamma \phi_{\mathrm{BBN}}} ;\left[\Rightarrow f(\phi)_{\mathrm{BBN}}=\tilde{\alpha}, f^{\prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma, f^{\prime \prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma^{2}\right]$ $\tilde{\alpha}$ invariant under $\phi^{\prime}{ }_{\mathrm{BBN}}=\phi_{\mathrm{BBN}}+\phi_{0}$, with $\alpha^{\prime}=\alpha e^{-\gamma \phi_{0}}, \quad \gamma^{\prime}=\gamma$

Solutions of Friedmann equations in dEGB theory

$$
\begin{array}{cl}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) & V=0 \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) & f(\phi)=\alpha \mathrm{e}^{\gamma \phi} \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0 & \text { Parameter space: } \\
\alpha, \gamma, \phi_{\mathrm{BBN}} \text { and } \dot{\phi}_{\mathrm{BBN}}
\end{array}
$$

- Contribution of $\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=\frac{1}{2} \dot{\phi}_{\mathrm{BBN}}^{2}$ to $\rho_{\text {tot }}$ at BBN is constrained by the effective number of neutrino flavors $N_{\text {eff }} \leq 2.99 \pm 0.17$
$\Rightarrow \rho_{\phi}\left(T_{\mathrm{BBN}}\right) \lesssim 3 \times 10^{-2} \rho_{\mathrm{BBN}}, \quad\left[\rho_{\mathrm{BBN}} \equiv\right.$ radiation energy density at BBN$]$
- ϕ (hence ϕ_{BBN}) appears in Friedmann equations only through $f(\phi)\left(=\alpha e^{\gamma \phi}\right)$ Define $\tilde{\alpha}=\alpha e^{\gamma \phi_{\mathrm{BBN}}} ;\left[\Rightarrow f(\phi)_{\mathrm{BBN}}=\tilde{\alpha}, f^{\prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma, f^{\prime \prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma^{2}\right]$ $\tilde{\alpha}$ invariant under $\phi^{\prime}{ }_{\mathrm{BBN}}=\phi_{\mathrm{BBN}}+\phi_{0}$, with $\alpha^{\prime}=\alpha e^{-\gamma \phi_{0}}, \gamma^{\prime}=\gamma$
- We show our results in terms of $\tilde{\alpha}$ and adopting $\phi_{\text {BBN }}=0$
[The results are independent of ϕ_{BBN}]

Solutions of Friedmann equations in dEGB theory

$$
\begin{array}{cl}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) & V=0 \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) & f(\phi)=\alpha e^{\gamma \phi} \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0 & \text { Parameter space: } \\
\alpha, \gamma, \phi_{\mathrm{BBN}} \text { and } \dot{\phi}_{\mathrm{BBN}}
\end{array}
$$

- Contribution of $\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=\frac{1}{2} \dot{\phi}_{\mathrm{BBN}}^{2}$ to ρ_{tot} at BBN is constrained by the effective number of neutrino flavors $N_{\text {eff }} \leq 2.99 \pm 0.17$
$\Rightarrow \rho_{\phi}\left(T_{\mathrm{BBN}}\right) \lesssim 3 \times 10^{-2} \rho_{\mathrm{BBN}}, \quad\left[\rho_{\mathrm{BBN}} \equiv\right.$ radiation energy density at BBN]
- ϕ (hence ϕ_{BBN}) appears in Friedmann equations only through $f(\phi)\left(=\alpha e^{\gamma \phi}\right)$ Define $\tilde{\alpha}=\alpha e^{\gamma \phi_{\mathrm{BBN}}} ;\left[\Rightarrow f(\phi)_{\mathrm{BBN}}=\tilde{\alpha}, f^{\prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma, f^{\prime \prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma^{2}\right]$ $\tilde{\alpha}$ invariant under $\phi^{\prime}{ }_{\mathrm{BBN}}=\phi_{\mathrm{BBN}}+\phi_{0}$, with $\alpha^{\prime}=\alpha e^{-\gamma \phi_{0}}, \gamma^{\prime}=\gamma$
- We show our results in terms of $\tilde{\alpha}$ and adopting $\phi_{\text {BBN }}=0$
[The results are independent of ϕ_{BBN}]
- H_{BBN} is obtained from $\phi_{\mathrm{BBN}} \& \dot{\phi}_{\mathrm{BBN}}$ by solving the 1st Eqn. (cubic in H_{BBN})

Solutions of Friedmann equations in dEGB theory

$$
\begin{array}{cl}
H^{2}=\frac{\kappa}{3}\left(\frac{1}{2} \dot{\phi}^{2}-24 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}\right) & \mathrm{V}=0 \\
\dot{H}=-\frac{\kappa}{2}\left(\dot{\phi}^{2}+8 \frac{d\left(f^{\prime} \dot{\phi} H^{2}\right)}{d t}-8 f^{\prime} \dot{\phi} H^{3}+\rho_{\mathrm{rad}}+p_{\mathrm{rad}}\right) & f(\phi)=\alpha \mathrm{e}^{\gamma \phi} \\
\ddot{\phi}+3 H \dot{\phi}-24 f^{\prime} H^{2}\left(\dot{H}+H^{2}\right)=0 & \text { Parameter space: } \\
\alpha, \gamma, \phi_{\mathrm{BBN}} \text { and } \dot{\phi}_{\mathrm{BBN}}
\end{array}
$$

- Contribution of $\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=\frac{1}{2} \dot{\phi}_{\mathrm{BBN}}^{2}$ to ρ_{tot} at BBN is constrained by the effective number of neutrino flavors $N_{\text {eff }} \leq 2.99 \pm 0.17$
$\Rightarrow \rho_{\phi}\left(T_{\mathrm{BBN}}\right) \lesssim 3 \times 10^{-2} \rho_{\mathrm{BBN}}, \quad\left[\rho_{\mathrm{BBN}} \equiv\right.$ radiation energy density at BBN]
- ϕ (hence ϕ_{BBN}) appears in Friedmann equations only through $f(\phi)\left(=\alpha \mathrm{e}^{\gamma \phi}\right)$ Define $\tilde{\alpha}=\alpha e^{\gamma \phi_{\mathrm{BBN}}} ;\left[\Rightarrow f(\phi)_{\mathrm{BBN}}=\tilde{\alpha}, f^{\prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma, f^{\prime \prime}(\phi)_{\mathrm{BBN}}=\tilde{\alpha} \gamma^{2}\right]$ $\tilde{\alpha}$ invariant under $\phi_{\text {BBN }}^{\prime}=\phi_{\mathrm{BBN}}+\phi_{0}$, with $\alpha^{\prime}=\alpha e^{-\gamma \phi_{0}}, \quad \gamma^{\prime}=\gamma$
- We show our results in terms of $\tilde{\alpha}$ and adopting $\phi_{\text {BBN }}=0$
[The results are independent of ϕ_{BBN}]
- H_{BBN} is obtained from $\phi_{\mathrm{BBN}} \& \dot{\phi}_{\mathrm{BBN}}$ by solving the 1st Eqn. (cubic in H_{BBN})
- Using $\dot{\phi}_{\text {BBN }}, \phi_{\text {BBN }}, H_{\text {BBN }}$ the Friedmann equations are solved to obtain the solutions $\phi, \dot{\phi}, H$, at $T>T_{\mathrm{BBN}}$

Numerical solutions of Friedmann equations

$\rho_{\phi}\left(T_{\text {BBN }}\right)=0 \quad \Rightarrow$ Standard Cosmology in the absence of the GB term (i.e. when $\tilde{\alpha}$ and/or $\gamma=0$)

Numerical solutions of Friedmann equations

$\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=0 \Rightarrow$ Standard Cosmology in the absence of the GB term (i.e. when $\tilde{\alpha}$ and/or $\gamma=0$)

Energy density vs. temperature:

$$
\tilde{\alpha}=-1 \mathrm{~km}^{2}, \quad \gamma=1
$$

$$
\tilde{\alpha}=1 \mathrm{~km}^{2}, \quad \gamma=1
$$

The GB term plays an important role on the scalar field dynamics \Rightarrow reduces (enhances) the expansion rate H compared to the Standard one
N.B.: only $\rho_{\text {tot }}$ and $\rho_{\text {rad }}$ represent physical energy densities while ρ_{ϕ} and ρ_{GB} are shown for illustrative purposes (ρ_{GB} can be negative and is plotted in absolute value)

Numerical solutions of Friedmann equations

$$
\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=3 \times 10^{-2} \rho_{\mathrm{BBN}}(\max .), \quad \tilde{\alpha}= \pm 1 \mathrm{~km}^{2}, \gamma= \pm 1 \quad\left[H^{2}=\frac{\kappa}{3} \rho_{\mathrm{tot}}\right]
$$

no dEGB
$\Rightarrow f^{\prime}=0$
$(\tilde{\alpha} \gamma=0)$

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]

Numerical solutions of Friedmann equations

- The GB term plays an important role on the kination dynamics:
slows down (speeds up) the evolution of the scalar field reduces (enhances) the expansion rate H
- H is larger (smaller) at high T when $\rho_{\phi}\left(=\frac{1}{2} \dot{\phi}^{2}\right)$ evolves with T faster (slower) than kination $\left(\rho_{\phi} \sim T^{6}\right)$

Physics of WIMP DM in dEGB modified cosmology

WIMP thermal freeze-out and relic density

WIMP in Standard Cosmology

$\Gamma_{\mathrm{A}}\left(=n_{\chi}\langle\sigma v\rangle\right)$: Rate of WIMP annihilation to SM particles
$H(T)$: Expansion rate of the Universe

WIMP thermal freeze-out and relic density

WIMP in Standard Cosmology

$\Gamma_{\mathrm{A}}\left(=n_{\chi}\langle\sigma v\rangle\right)$: Rate of WIMP annihilation to SM particles
$H(T)$: Expansion rate of the Universe

WIMP thermal freeze-out and relic density

WIMP in Standard Cosmology

$\Gamma_{\mathrm{A}}\left(=n_{\chi}\langle\sigma v\rangle\right):$ Rate of WIMP annihilation to SM particles
$H(T)$: Expansion rate of the Universe
Evolution of WIMP comoving number density ($\left.Y_{\chi}=n_{\chi} / s\right)$:

$$
\frac{d Y_{\chi}}{d x}=-\frac{\beta s}{H(x) x}\langle\sigma v\rangle\left(Y_{\chi}^{2}-\left(Y_{\chi}^{\mathrm{eq}}\right)^{2}\right), \quad x=m_{\chi} / T
$$

$m_{\chi} \equiv$ WIMP mass ; $\quad s \sim g_{* s} T^{3}$ (entropy density) ; $\beta=\left(1+\frac{1}{3} d \ln g_{* s} / d \ln T\right)$
Equilibrium comoving density: $Y_{\chi}^{\text {eq }} \sim x^{3 / 2} \exp (-x)$

WIMP thermal freeze-out and relic density

WIMP in Standard Cosmology

$\Gamma_{\mathrm{A}}\left(=n_{\chi}\langle\sigma v\rangle\right)$: Rate of WIMP annihilation to SM particles
$H(T)$: Expansion rate of the Universe
Evolution of WIMP comoving number density ($Y_{\chi}=n_{\chi} / s$):

$$
\frac{d Y_{\chi}}{d x}=-\frac{\beta s}{H(x) x}\langle\sigma v\rangle\left(Y_{\chi}^{2}-\left(Y_{\chi}^{\mathrm{eq}}\right)^{2}\right), \quad x=m_{\chi} / T
$$

$m_{\chi} \equiv$ WIMP mass ; $s \sim g_{* s} T^{3}$ (entropy density); $\beta=\left(1+\frac{1}{3} d \ln g_{* s} / d \ln T\right)$
Equilibrium comoving density: $Y_{\chi}^{\text {eq }} \sim x^{3 / 2} \exp (-x)$
WIMP relic density: $\Omega_{\chi} h^{2}=\frac{\rho_{\chi}}{\rho_{c}} h^{2} \simeq 2.8 \times\left(\frac{m_{\chi}}{\mathrm{GeV}}\right) Y_{\chi}^{0} ; \quad \Omega_{\chi} h^{2} \propto 1 /\langle\sigma v\rangle$

WIMP thermal freeze-out and relic density

WIMP in Standard Cosmology

$\Gamma_{\mathrm{A}}\left(=n_{\chi}\langle\sigma v\rangle\right)$: Rate of WIMP annihilation to SM particles
$H(T)$: Expansion rate of the Universe
Evolution of WIMP comoving number density ($\left.Y_{\chi}=n_{\chi} / s\right)$:

$$
\frac{d Y_{\chi}}{d x}=-\frac{\beta s}{H(x) x}\langle\sigma v\rangle\left(Y_{\chi}^{2}-\left(Y_{\chi}^{\mathrm{eq}}\right)^{2}\right), \quad x=m_{\chi} / T
$$

$m_{\chi} \equiv$ WIMP mass ; $s \sim g_{* s} T^{3}$ (entropy density); $\beta=\left(1+\frac{1}{3} d \ln g_{* s} / d \ln T\right)$
Equilibrium comoving density: $Y_{\chi}^{\text {eq }} \sim x^{3 / 2} \exp (-x)$
WIMP relic density: $\Omega_{\chi} h^{2}=\frac{\rho_{\chi}}{\rho_{c}} h^{2} \simeq 2.8 \times\left(\frac{m_{\chi}}{\mathrm{GeV}}\right) Y_{\chi}^{0} ; \quad \Omega_{\chi} h^{2} \propto 1 /\langle\sigma v\rangle$
Observation: $\left.\Omega_{\chi} h^{2}\right|_{\text {obs }}=0.12$

WIMP thermal freeze-out and relic density

In Standard Cosmology, $\langle\sigma v\rangle_{f} \simeq 3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ gives $\Omega_{\chi} h^{2}=0.12$

WIMP thermal freeze-out and relic density

In Standard Cosmology, $\langle\sigma v\rangle_{f} \simeq 3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ gives $\Omega_{\chi} h^{2}=0.12$

$$
\left[H^{2}=\frac{\kappa}{3} \rho_{\mathrm{tot}}\right]
$$

In dEGB cosmology H gets modified during WIMP freeze-out
\Rightarrow affects $\Omega_{\chi} h^{2}$

$\Rightarrow\langle\sigma v\rangle_{f}$ different from $\langle\sigma v\rangle_{f}^{\text {standard }}$ so that $\Omega_{\chi} h^{2}=0.12$

Enhancement factor for the expansion rate

"Enhancement of the expansion rate": $A(T) \equiv H(T) / H_{\mathrm{rad}}(T)$
Standard Cosmology $\Rightarrow A=1$

Enhancement factor for the expansion rate

"Enhancement of the expansion rate": $A(T) \equiv H(T) / H_{\mathrm{rad}}(T)$
Standard Cosmology $\Rightarrow A=1$
© $T=50 \mathrm{GeV}$ (decoupling temperature of TeV WIMP)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]

Enhancement factor for the expansion rate

"Enhancement of the expansion rate": $A(T) \equiv H(T) / H_{\mathrm{rad}}(T)$
Standard Cosmology $\Rightarrow A=1$
© $T=50 \mathrm{GeV}$ (decoupling temperature of TeV WIMP)

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]

In order to get $\Omega_{\chi} h^{2}=0.12$:
$A>1 \Rightarrow\langle\sigma v\rangle_{f}>\langle\sigma v\rangle_{f}^{\text {standard }}$

$$
A<1 \Rightarrow\langle\sigma v\rangle_{f}<\langle\sigma v\rangle_{f}^{\text {standard }}
$$

WIMP annihilation cross-section $\langle\sigma v\rangle$

- In general $\langle\sigma v\rangle$ can be a function of T

Expansion of $\langle\sigma v\rangle$ in powers of $v^{2} / c^{2} \ll 1$:

$$
\langle\sigma v\rangle \simeq a+b\left(\frac{T}{m_{\chi}}\right) \quad[a \rightarrow s \text {-wave; } b \rightarrow p \text {-wave }]
$$

- We assume s-wave annihilation
$\Rightarrow\langle\sigma v\rangle$ independent of T
$\Rightarrow\langle\sigma v\rangle_{f}=\langle\sigma v\rangle_{0}$ (today)

Constraints on WIMP annihilation from Indirect Detection searches

- Indirect Detection: searches for γ-ray $/ \nu^{\prime} \mathrm{s} / e^{+} / \bar{p}$ signals produced by WIMP annihilations in the late Universe (e.g., in the Galaxy, in local dwarf galaxies) $\chi \chi \rightarrow b \bar{b}, \tau^{+} \tau^{-}, W^{+} W^{-}, \ldots \Rightarrow \gamma$-rays, $e^{ \pm}, p(\bar{p}), \nu(\bar{\nu})$

Experiments: Fermi-LAT (γ-rays from dwarf galaxies, Galactic Center) ; AMS (e^{+}, \bar{p} in cosmic-rays) ; CMB measurements

Constraints on WIMP annihilation from Indirect Detection searches

- Indirect Detection: searches for γ-ray $/ \nu^{\prime} \mathrm{s} / e^{+} / \bar{p}$ signals produced by WIMP annihilations in the late Universe (e.g., in the Galaxy, in local dwarf galaxies)
$\chi \chi \rightarrow b \bar{b}, \tau^{+} \tau^{-}, W^{+} W^{-}, \ldots \Rightarrow \gamma$-rays, $e^{ \pm}, p(\bar{p}), \nu(\bar{\nu})$
Experiments: Fermi-LAT (γ-rays from dwarf galaxies, Galactic Center) ; AMS (e^{+}, \bar{p} in cosmic-rays) ; CMB measurements
$<\sigma v>$ that gives $\Omega h^{2}=0.12$ in Standard Cosmology (assuming s-wave annihilation)

- The Indirect Detection upper-limit is obtained combining all possible SM annihilation channels and different existing experimental observations

Constraints on WIMP annihilation from Indirect Detection searches

$<\sigma v>$ that gives $\Omega h^{2}=0.12$ in Standard Cosmology
(assuming s-wave annihilation)

$\langle\sigma v\rangle_{\text {relic }}$: gives $\Omega_{\chi} h^{2}=0.12$
$\langle\sigma v\rangle_{\text {ID }}$: upper-limit on $\langle\sigma v\rangle$ from Indirect Detection
$\langle\sigma v\rangle_{\text {relic }} /\langle\sigma v\rangle_{\text {ID }}>1 \Rightarrow$ Disallowed WIMPs
$\langle\sigma v\rangle_{\text {relic }} /\langle\sigma v\rangle_{\text {ID }} \leq 1 \Rightarrow$ Allowed WIMPs

- In Standard Cosmology $m_{\chi} \lesssim 20 \mathrm{GeV}$ is disallowed by existing searches
- In modified cosmology $\langle\sigma v\rangle_{\text {relic }}$ is different

dEGB parameter space favoured/disfavoured by WIMP searches

Constraints on dEGB from Black Hole (BH) \& Neutron Star (NS) mergers

- Near a BH or a NS the density of ϕ field in the dEGB scenario is distorted compared to its background value
\Rightarrow leads to a local departure from standard GR that can modify the Gravitational Wave (GW) signal from BH and NS binary mergers
\Rightarrow GW data (taken by LIGO-Virgo) from BH and NS binary mergers can constrain dEGB

Constraints on dEGB from Black Hole (BH) \& Neutron Star (NS) mergers

- Near a BH or a NS the density of ϕ field in the dEGB scenario is distorted compared to its background value
\Rightarrow leads to a local departure from standard GR that can modify the Gravitational Wave (GW) signal from BH and NS binary mergers
\Rightarrow GW data (taken by LIGO-Virgo) from BH and NS binary mergers can constrain dEGB

$$
\begin{gathered}
S=\int_{\mathcal{M}} \sqrt{-g} d^{4} \times\left[\frac{R}{2 \kappa}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi+f(\phi) R_{\mathrm{GB}}^{2}+\mathcal{L}_{m}^{\mathrm{rad}}\right] \\
\left|f^{\prime}\left(\phi_{\text {Late }}\right)\right| \lesssim \sqrt{8 \pi}(1.18)^{2} \mathrm{~km}^{2}
\end{gathered}
$$

$$
f(\phi)=\alpha e^{\gamma \phi}
$$

- In our notation:

$$
\left|\tilde{\alpha} \gamma e^{\gamma\left(\phi_{\mathrm{Late}}-\phi_{\mathrm{BBN}}\right)}\right|=\left|\tilde{\alpha} \gamma e^{\frac{\dot{\phi}_{\mathrm{BBN}}}{\hat{\mathrm{BBCN}}_{\mathrm{BBN}}}}\right| \leq \sqrt{8 \pi}(1.18)^{2} \mathrm{~km}^{2} \quad \tilde{\alpha}=\alpha \mathrm{e}^{\gamma \phi_{\mathrm{BBN}}}
$$

Complementarity between GW and WIMP search constraints

Summary

- We study cosmologies in a dilatonic Einstein-Gauss-Bonnet (dEGB) scenario [GB term is non-minimally coupled to a scalar field with vanishing potential]
- Standard Cosmology is modified irrespective of the initial conditions on ϕ and $\dot{\phi}$ (even with $\phi_{\text {ini }}$ and $\dot{\phi}_{\text {ini }}=0$), if the coupling $f(\phi)$ is not constant
- In dEGB cosmology, WIMP annihilation cross-section $\langle\sigma v\rangle$ required to predict correct relic density is modified compared to its standard value
$\Rightarrow\langle\sigma v\rangle$ can be larger than the upper-limit obtained from Indirect Detection
\Rightarrow dEGB parameter space can be favoured/disfavoured by WIMP searches
- WIMP mass $m_{\chi} \lesssim 20 \mathrm{GeV}$ is inconsistent with Standard Cosmology In dEGB scenario, $m_{\chi} \lesssim 20 \mathrm{GeV}$ can be accommodated
- WIMP search constraints on the dEGB parameter space are nicely complementary to late-time constraints from compact binary mergers
\Rightarrow It could be interesting to use other early Cosmology processes to probe the dEGB scenario

Thank You

Backup slides

Continuity equations

Continuity equation of energy-momentum tensor:

$$
\begin{gathered}
\dot{\rho}_{\text {tot }}+3 H\left(\rho_{\text {tot }}+p_{\text {tot }}\right)=0 \\
\dot{\rho}_{\text {rad }}+3 H\left(\rho_{\text {rad }}+p_{\text {rad }}\right)=0 \\
\dot{\rho}_{\{\phi+\mathrm{GB}\}}+3 H\left(\rho_{\{\phi+\mathrm{GB}\}}+p_{\{\phi+\mathrm{GB}\}}\right)=0
\end{gathered}
$$

Equation of states

$\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=0, \quad \tilde{\alpha}= \pm 1 \mathrm{~km}^{2}, \gamma=1$

A. Biswas, AK, B-H. Lee, H. Lee, W. Lee, S. Scopel, L. V-Sevilla, L. Yin, [2303.05813]

Equation of states

$$
\rho_{\phi}\left(T_{\mathrm{BBN}}\right)=3 \times 10^{-2} \rho_{\mathrm{BBN}}(\max .), \quad \tilde{\alpha}= \pm 1 \mathrm{~km}^{2}, \gamma= \pm 1
$$

