
No Scalar-Haired Cauchy Horizon Theorem in Charged Gauss-Bonnet
Black Holes

arXiv:2101.10116, 2307.10532

Deniz O. Devecioglu
CQUEST

August 3 2023



Outline

1 No Cauchy horizon and scaling charge

2 Setup and field equations

3 Horizon expansion
No gauge field At, q=0
At ≠ 0, q=0
Finally turning on q

4 Numerical solutions

5 Conclusions-Future Work

Deniz O. Devecioglu 2 / 32



Solutions inside Cauchy horizon is not determined from initial data, i.e. determinism fails.
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▶ First, let us start by a quick review of yesterday’s talk by Mu-In.

▶ Problem was to find that whether the Cauchy horizon (inner horizon) is allowed for black
holes with charged scalar hairs in different horizon topologies k = 0,±1.

▶ Yesterday he discussed the problem for Einstein-Maxwell-scalar (EMS) theories
arXiv:2009.05520 and Einstein-Maxwell-Horndeski arXiv:2101.10116. (here by Horndeski I
mean G𝜇𝜈D𝜇𝜑D𝜈𝜑). Today I will try to cover what we have done in Einstein-Gauss-Bonnet
arXiv:2307.10532 and may be some extras.

▶ Basic idea is the following: Consider the metric and the possible horizon structure

ds2 = −h(r)dt2 + dr2

f (r) + r2d2Ωk
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Then assuming you have the following radially conserved charge Q(r), i.e. Q(r)′ = 0 on shell.

Q(r) = LOCAL PART + k
∫ r

INTEGRAND dr̃.

as this is radially conserved: Q(r+) = Q(r−) meaning

LOCAL PART(r+) − LOCAL PART(r−) = k
∫ r+

r−
INTEGRAND dr̃.

finding whether this equality can hold or not usually depends on the behaviour of the integrand.

As a previous example discussed yesterday
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In the following we will consider the D dimensional EMGB Lagrangian

L = 𝜅

(
R − Z ( |𝜑 |2)

4
F𝜇𝜈F𝜇𝜈

)
+ 𝛽( |𝜑 |2)GB − 𝛼(D𝜇𝜑) (D𝜇𝜑)∗ − V ( |𝜑 |2)

where GB =
(
R𝜇𝜈𝛼𝛽R𝜇𝜈𝛼𝛽 − 4R𝜇𝜈R𝜇𝜈 + R2) and D𝜇 = ∇𝜇 − iqA𝜇 with A𝜇 = At (r)dt.

For the sake of the discussion of the scaling charge this form of metric is more suitable

The alternate metric with k = 0

ds2 = −A(𝜌)2dt2 + d𝜌2 + B(𝜌)2dx2
D−2,

where the coordinate transformations to the usual f , h metric are

A =
√

h, B = r, 𝜌 =

∫
dr√︁

f
,

𝜕𝜌

𝜕r
=

1√︁
f
,

𝜕

𝜕𝜌
=

√︁
f
𝜕

𝜕r
.
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With this choice of the planar metric (k = 0) the reduced action is invariant under the following
finite scaling transformations

The scaling transformations

A(𝜌) → 𝜆2−DA(𝜌), B(𝜌) → 𝜆B(𝜌), At (𝜌) → 𝜆2−DAt (𝜌)

In order to find the Noether charge we use a field theory trick where the global symmetry parameter
𝜆 is localized as 𝜆(𝜌) and then the Noether charge is the coefficient of 𝜆′(𝜌) in the variation of the
action. ( arXiv:1605.07128)

Q = 2𝜅(D − 2)
(
A′BD−2 − ABD−3B′

)
−
𝜅(D − 2)BD−2AtA′

tZ
(
|𝜑 |2

)
A

+4𝛽( |𝜑|2) (D − 4) (D − 3) (D − 2)BD−5
(
AB′3 − A′BB′2

)
+16 ¤𝛽( |𝜑|2) |𝜑𝜑′ |BD−4B′(AB′ − A′B). (1)
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It is easy to show that the derivative of the charge is a combination of the field equations

Q′ = (D − 2)
(
AEA − BEB

(D − 2) + AtEAt

)
, (2)

Remember this was for k = 0, but when we consider k = ±1 metrics

ds2 = −A(𝜌)2dt2 + d𝜌2 + B(𝜌)2dΩ2
D−2,

the EMGB action in general will not be invariant under the scalings we have discussed. That is
where we get the k dependent integral (non-local) pieces.

However, one can still construct a conserved charge by simply adding the space integral of all the
non-conservation terms in (2) with a minus sign so that all the non-conservation terms are
canceled. But in this case, the conserved charge has non-local (i.e. integral) terms as well as the
usual local terms, and so it seems that there is no relation to the action invariance and it is beyond
the Noether’s theorem.
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Transforming back to the f , h coordinates after finding the charge in A,B coordinates we have

The scaling charge for all k

Q = (D − 2)rD−3
√︂

f
h

[
𝜅 (rh′ − 2h − rZAtAt

′) − 2(D − 3)
r2 f (rh′ − 2h)

(
(D − 4)𝛽 + 4r |𝜑𝜑′ | ¤𝛽

) ]
+k

∫ r
dr rD−4

{
2(D − 2) (D − 3)

√︄
h
f

[
𝜅 − 4 ¤𝛽

(
|𝜑(f ′𝜑′ + 2f 𝜑′′) | + 2f |𝜑′ |2

)
− 16 ¥𝛽f |𝜑𝜑′ |2

]
+ (D − 4) (D − 3) (D − 2)

r
√︁

f h3/2

[
𝛽

(
rh(f ′h′ + 2fh′′) − 6f ′h2 − rfh′2

)
+ 4 ¤𝛽fh(rh′ − 6h) |𝜑𝜑′ |

]
+
∑D

n=5(n − 5) (n − 4) (n − 3)
r2

√︁
fh

8𝛽 [rfh′ + 2(k − 2f )h]
}
, (3)
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Now, due to the r-independence of the scaling charge Q, one can consider the charges at the
horizons, in particular, the outer event horizon r+ and the inner Cauchy horizon r−, if exists, so that
we have

𝜅(D − 2)
[
rD−2
+

√︂
f
h

(
h′ − ZAtA′

t
) �����

r+

− rD−2
−

√︂
f
h

(
h′ − ZAtA′

t
) �����

r−

]
= −k

∫ r+

r−
dr rD−4

{
2(D − 2) (D − 3)

√︄
h
f

[
𝜅 − 4 ¤𝛽

(
|𝜑(f ′𝜑′ + 2f 𝜑′′) | + 2f |𝜑′ |2

)
− 16 ¥𝛽f |𝜑𝜑′ |2

]
+ (D − 4) (D − 3) (D − 2)

r
√︁

f h3/2

[
𝛽

(
rh(f ′h′ + 2fh′′) − 6f ′h2 − rfh′2

)
+ 4 ¤𝛽fh(rh′ − 6h) |𝜑𝜑′ |

]
+
∑D

n=5(n − 5) (n − 4) (n − 3)
r2

√︁
fh

8𝛽 [rfh′ + 2(k − 2f )h]
}
. (5)

Moreover, one can prove that At needs to be zero at the horizons At (r+) = At (r−) = 0, from the
regularity at the horizons with “charged" (complex) scalar fields. This regularity condition is
another key ingredient for the proof of the theorem.
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Even for D = 4 it seems with k ≠ 0, the right-hand side does not have a definite sign generally with
the GB terms (𝛽 ≠ 0), and so there is no simple condition for the (non) existence of the inner (or
outer) horizon associated with non-planar topologies.

2𝜅

[
r2
+

√︂
f
h

(
h′ − ZAtA′

t
) �����

r+

− r2
−

√︂
f
h

(
h′ − ZAtA′

t
) �����

r−

]
= −k

∫ r+

r−
dr

{
4

√︄
h
f

[
𝜅 − 4 ¤𝛽

(
|𝜑(f ′𝜑′ + 2f 𝜑′′) | + 2f |𝜑′ |2

)
− 16 ¥𝛽f |𝜑𝜑′ |2

]}
. (6)

I will speculate on the integrand term and the form of it for some special solutions (If I have time).
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Setup and field equations
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In the following we will consider the D dimensional action

L = 𝜅

(
R − Z ( |𝜑 |2)

4
F𝜇𝜈F𝜇𝜈

)
+ 𝛽( |𝜑 |2)GB − 𝛼(D𝜇𝜑) (D𝜇𝜑)∗ − V ( |𝜑 |2)

where GB =
(
R𝜇𝜈𝛼𝛽R𝜇𝜈𝛼𝛽 − 4R𝜇𝜈R𝜇𝜈 + R2) and D𝜇 = ∇𝜇 − iqA𝜇 with A𝜇 = At (r)dt.

The metric ansatz reads

ds2 = −eA(r)dt2 + eB(r)dr2 + r2dkΩ
2.

In this form the metric assuming there is an event horizon at r = rH we should have eA |→r+H → 0+

outside the horizon and eA |→r−H → 0− where r → r+H means approaching the horizon from outside
or r → r−H approaching from inside. Then from the near horizon expansion as r → r±H then
A′(rH) → ±∞.

eA(r) =a1(r − rH) + a2(r − rH)2 + · · ·
=eA(rH )A′(rH) (r − rH) + · · ·
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In this form the metric assuming there is an event horizon at r = rH we should have eA |→r+H → 0+

outside the horizon and eA |→r−H → 0− where r → r+H means approaching the horizon from outside
or r → r−H approaching from inside. Then from the near horizon expansion as r → r±H then
A′(rH) → ±∞.

eA(r) =a1(r − rH) + a2(r − rH)2 + · · ·
=eA(rH )A′(rH) (r − rH) + · · ·
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Now we need to solve A(r),B(r),At (r), 𝜑(r). First focus on the equation for B(r) which is algebraic

e2BB1(A,At, 𝜑) + eBB2(A,At, 𝜑) + B3(A,At, 𝜑) = 0.

The solution is

eB =
−𝜇(r) ±

√︁
𝜇(r)2 − 4𝜈(r)
2

,

where

𝜇(r) =
2
(
4k|𝜑𝜑′ | ¤𝛽 + r/𝜅

)
A′ +

(
r2e−AZA′2

t + 4
)
/2𝜅 − 𝛼r2 |𝜑′ |2

−𝛼q2r2e−A |𝜑 |2A2
t − 2k/𝜅 + r2V

,

𝜈(r) =
−24|𝜑𝜑′ | ¤𝛽A′

−𝛼q2r2e−A |𝜑 |2A2
t − 2k/𝜅 + r2V
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From this solution it is useful to write down the derivative of B(r)′ as follows

B′(r) = − eB𝜇′ + 𝜈′

eB𝜇 + 2e2B .

Then employing the rest of the field equations we can find the rest of the equations satisfied by
A′′, 𝜑′′,A′′

t

A′′ =
P
S
, 𝜑′′ =

Q
S
, A′′

t =
R
Y

with P,Q,R, S, Y are functions involving at most the first derivatives of the fields and second
derivative of the coupling i.e. ¥𝛽( |𝜑|2).

As there are no known exact solutions we will resort to the numerical approach, which needs the
information about initial values of the fields at the horizon.
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Horizon expansion

Deniz O. Devecioglu 18 / 32



No gauge field At = 0, q=0

▶ Einstein limit 𝛽 = 0
The solution for eB(r) is a single root.

▶ EGB limit 𝛽 ≠ 0 (some simplification) arXiv:1711.03390, arXiv:2305.19814...
From a quick glance of the solution eB(r) one can see eA(r) terms are gone.

▶ Now as we have discussed eB → ∞ as r → rH meaning A′ → ∞. In order to check the
behaviour of eB(r) we take A′ = 1/c and expand around c = 0 (for the plus root)

all evaluated ar r = rH

eB =
8𝜑𝜑′ ¤𝛽(𝜑2) + 2𝜅r(

2𝜅 − r2V (𝜑2)
) A′ +

𝜅r
(
2𝜅 − 𝛼r2𝜑′2) − 4𝜑𝜑′ ¤𝛽(𝜑2)

(
4𝜅 + 𝛼r2𝜑′2 − 3r2V (𝜑2)

)(
2𝜅 − r2V (𝜑2)

) (
4𝜑𝜑′ ¤𝛽(𝜑2) + 𝜅r

) +O(1/A′)

▶ The condition 8𝜑𝜑′ ¤𝛽(𝜑2) + 2𝜅r = 0 actually forces 𝛽(𝜑) → ∞ at the horizon which will lead
to divergent or trivial scalar field at the horizon.
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▶ On the other hand, the root with the minus sign has the following structure

eB =
12𝜑𝜑′ ¤𝛽(𝜑2)

4𝜑𝜑′ ¤𝛽(𝜑2) + 𝜅r
+O(1/A′) + · · ·

▶ After making sure that you choose the correct root, apply the expansion to the remaning field
equations

A′′ =
P
S
, 𝜑′′ =

Q
S

all evaluated ar r = rH

𝜑′′ =
Q
S

=
Q1A′2 + Q2A′ + Q3 +O(1/A′)

S1A′ + S2 +O(1/A′) = f (T , 𝜑, 𝜑′) A′ +O(1)

▶ In order to have a finite 𝜑′′ we need f (T , 𝜑, 𝜑′) = 0
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Solving this condition we have three roots for 𝜑′(rH)

𝜑′(rH)1,2 = −
𝜅r2

H

8rH𝜑 ¤𝛽

(
1 ±

√︄
1 − 192𝜑2 ¤𝛽2

𝛼𝜅r4
H

)
, 𝜑′(rH)3 = − 𝜅rH

4𝜑 ¤𝛽
(7)

among these solutions 𝜑(rH)1,2 one of them gives the correct Einstein limit! (Remember yesterday
Miok’s talk.)
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At ≠ 0, q=0

▶ This time the solution for eB(r) has eA(r) terms in it

eB =
−𝜇(r) ±

√︁
𝜇(r)2 − 4𝜈(r)
2

,

where

𝜇(r) =
2
(
4k|𝜑𝜑′ | ¤𝛽 + r/𝜅

)
A′ +

(
r2e−AZA′2

t + 4
)
/2𝜅 − 𝛼r2 |𝜑′ |2

−2k/𝜅 + r2V
,

𝜈(r) =
−24|𝜑𝜑′ | ¤𝛽A′

−2k/𝜅 + r2V
Therefore we first need to compare e−A and A′ as r → rH . For this consider the following
expansion of eA near the horizon

eA = a1(r − rH) + a2(r − rH) + · · · , (8)

then A′ can be written as

A′ = (eA)′e−A = a1 + 2a2(r − rH) + · · · (9)
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finally we can check the limit A′/e−A as r → rH

lim
r→rH

A′

e−A = a1 = T (10)

so e−A ≈ A′/T . Employing this the eB(r) near horizon expansion will be

all evaluated ar r = rH

eB =
𝜅r2Z (𝜑)A′2

t + 16T𝜑𝜑′ ¤𝛾(𝜑2) + 4𝜅rT
4𝜅T − 2r2TV (𝜑2)

A′ +O(0) +O(1/A′)

Again the other root is not suitable, i.e. finite at the horizon. This time we have three field equations

A′′ =
P
S
, 𝜑′′ =

Q
S
, A′′

t =
R
Y

(11)

Expanding 𝜑′′

𝜑′′ =
Q
S

=
Q1A′2 + Q2A′ + Q3 +O(1/A′)

S1A′ + S2 +O(1/A′) = f (T , 𝜑, 𝜑′,A′
t ) A′ +O(1) (12)
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𝜑′ =f1±/f2
f1± =4𝜅2r4TZA′2

t ¤𝛾 ¤V − 2𝛼𝜅3r4TZA′2
t − 8𝛼𝜅3r3T2 + 16𝜅2r3T2 ¤𝛾 ¤V + 16r3T2V2 ¤𝛾2

−4𝜅3r2TA′2
t ¤𝛾 ¤Z + 𝜅rTV

(
𝛼𝜅r4

(
rZA′2

t + 4T
)
+ 2𝜅r3A′2

t ¤𝛾 ¤Z − 24 ¤𝛾2
(
rZA′2

t + 4T
))

+ 16𝜅2TZA′2
t ¤𝛾2

±
{

T2
(
r2V − 2𝜅

)2
[
𝛼2𝜅4r6

(
rZA′2

t + 4T
)2

− 4𝛼𝜅4r5A′2
t ¤𝛾 ¤Z

(
rZA′2

t + 4T
)

+4𝜅2r2 ¤𝛾2
(
𝜅

(
𝜅r2A′4
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t − 192𝛼T2
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(
rZA′2
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−64 ¤𝛾4
(
−4r2T2V2 + 12𝜅TV
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t
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+32𝜅2r2 ¤𝛾3
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4T ¤V

(
rZA′2

t + 6T
)
+ A′2

t ¤Z
(
2rTV − 𝜅ZA′2

t

)) ]}1/2

f2 =16T2 ¤𝛾
(
V

(
8 ¤𝛾2 − 𝛼𝜅r4

)
+ 2𝜅r2 (

𝛼𝜅 − ¤𝛾 ¤V
) )

.
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At ≠ 0, q ≠ 0

▶ Doing the eB expansion as usual we find

eB =
1

4𝛼q2r2𝜑2A2
t
(· · · ) +O(1/A′) (13)

both of the roots are finite!
▶ We should set the gauge field zero at the horizon, i.e. At (rH) = 0. Therefore, we should take

two limits to understand near horizon behaviour: one for A′ → ∞ and the other At → 0 both
as r → rH .

▶ We call A′ = 1/c and At = d then expand around both parameters. The final result should not
depend on the expansion, however if one does first c expansion then d expansion, the lowest
order in c can not be obtained. Therefore we first expand in d then expand in c the result is

eB(r) =
k𝜅r2Z

(
𝜑2) A′2

t + 16T𝜑𝜑′ ¤𝛾
(
𝜑2) + 4k𝜅rT

2T
(
2𝜅 − kr2V

(
𝜑2) ) 1

c
+
𝛼q2r2𝜑2 (

𝛼r2𝜑′2 − 2𝜅
)

T
(
r2V

(
𝜑2) − 2k𝜅

)2
d2

c
+ · · · (14)
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▶ In order to be able to solve the 𝜑′′ expansion here we assume d2/c → 0. Then the results of
the previous section applies for the solution of 𝜑(rH)′ as there are no q2 contributions.

▶ Armed with the knowledge of initial condition on the 𝜑′ we are now in a a position to solve
the field equations numerically.
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Numerical solutions
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Here we first present numerical solution of the four-dimensional (D = 4) hyperbolic charged GB
black hole in EMGBS gravity for the choice of the model

𝛽( |𝜑 |2) = 𝜆 |𝜑|2, V ( |𝜑 |2) = −6 + m2 |𝜑 |2, Z ( |𝜑 |2) = 1, 𝜆 = 10−3, m2 = −0.18, q = 2.5. (15)
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Conclusions-Future Work
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▶ In this work utilizing the scaling charge we tried to determine whether the black holes of
EMGB admits Cauchy horizon.

▶ However, other than k = 0 case it was not possible to determine the topologies that admit
Cauchy horizon because of the complicated structure of the non-local term.

▶ Employing numerical techniques we were able to the existence of the inner horizon for k = −1
hyperbolic black holes.

▶ Is there a way to discuss the positivity of the integral piece ? May be, for the outside of the
black hole (in 4 dimensions) I can give an argument depending on the perturbation stability
(gradient stability).

▶ Any other uses of this charge ? Actually the local version was already used to compute charge
and entropy of the Horndeski type black holes for k = 0.
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THANK YOU!
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