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Motivation: SUSY on EAdS2

* All extremal black holes universally have an AdS, factor in
their near horizon geometry [Sen ‘07].

* Euclidean path integral approach provides thermodynamic
properties of the black holes [Gibbons, Hawking ‘97]

* Supersymmetry provides us with a powerful tool for
quantum study of black hole entropy.

e.g. SUSY localization method [Nekrasov 02, Pestun '07]



Motivation: SUSY on EAdS2

e [Sen '08] Quantum formula of macroscopic entropy for
extremal black holes is defined as a partition function on
Euclidean AdS,
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* For various BPS black holes, perturbative 1-loop matches

with corresponding microscopic result.
[Sen ’08; Bhattacharyya, Panda, Sen ’12; Keeler, Larsen, Lisao
'14’15; Banerjee, Banerjee, Gupta, Mandal, Thakur, ...]



Motivation: SUSY on EAdS2

* Application of supersymmetric localization:
One successful example is for entropy of 1/8 BPS black hole

in type |l supergravity, reproducing microstate degeneracy as
an integer !

Zsugra

st = (o719 4) = integer

[Dabholkar, Gomes, Murthy ’10,’11; Gupta, Murthy ’12; Gupta, lto, IJ
'15; Murthy, Reys, de Wit Murthy, Reys ’18; IJ, Murthy ’18; lliesiu,
Murthy, Turiaci, 22 |

* Despite those extensive results...



The problem

* Supersymmetric boundary condition and normalizable
condition are not always compatible. [David, Gave, Gupta,
Narain 18, 19]

e Standard normalizable eigenbasis [Camporesi, Higuchi ‘94]
for bosonic and fermionic fluctuation are not mapped to
each other by supersymmetry [Sen ‘23].

* Supersymmetry demands ‘non-normalizable’ modes?
— path integral ill-defined?!
— well-defined theories on AdS cannot have SUSY?!



The problem

Sen : “Then, we cannot use the localization for SUGRA ”, giving up SUSY.

e [f there is no SUSY, what does it mean by ‘super’ gravity on AdS and its
dual ‘supersymmetric’ field theory?

* How can the 1-loop test using the standard non-supersymmetric basis
agree with results from supersymmetric microscopic theory?

e How is the localization method valid and capable of giving the correct
exact result?

We resolve this problem by showing that EAdS2 requires complexified
spectrum and constructing the supersymmetric Hilbert space for scalar
and spinor fields.
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Problem of SUSY and standard basis

e SUSY relation between boson and fermion is generically given by

QP =¢cV.

e On the AdS, geometry,
ds* = L?(dn? + sinh” n) d6?) 0<n<oo,0<6<2nm

the Killing spinor equation is given by
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whose solutions are
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* They have exponential asymptotic growth exp(1/2) for large 7] .



Problem of SUSY and standard basis

e Eigenbasis of —V? for scalar:

PAk(1,0) ~ eik@sinh““'nF(ozs, Bs; [k +1; —sinth) y =%+|k|+ i\, By =%+|l-c!—iA

with k € Z, X € Ry, where F(a, 3;7; z) is the hypergeometric function,
which have eigenvalue, L™2(\* + 1/4).

» Eigenbasis of 1y*D, spinor field:
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af = k+14i), Bf = k+1—1iA

with A € R, £k € Z>o, which have the eigenvalue, L=\



Problem of SUSY and standard basis

* Eigenbasis of scalar and spinor fields grow as
Cb,\,k(ﬁ, 0) ~ e TlIHiko (Oé/\,keiA” + @—A,ke_v\n)
:|: _ﬂ . l o s
Yy~ em 2t BT (8 oy d e TMB_ ) pugy)

having degree of growth -1/2.

* Since the bispinor

esi)\nj:i(k+1)6 siAn=tik0O

+ +
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has the degree of growth 0,

e the left and right hand side of the supersymmetry relation &@® = WV
do not match when expressed in terms of standard basis.



Problem with SUSY on AdS2

e Supersymmetry in terms of mode expansion coefficient

O =N ambm, V=) byt

Qam = (Om|eV) = ), bn{Pm|etn)

* The inner product is ill-defined as the integration diverges

(dr o le¥ak) ~ [ dﬁ\/ge_%n — 00

e We can obtain the inner product using analytic continuation: Introduce € > 1/2 such that
the integration converges and take € — 0 at the end.

(O kle"Pan) oc SN+ (A=s55)) +0 (N = (A=s3))

e Since the parameter A and A’ are real, the inner product is zero. = No SUSY.
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Supersymmetric Hilbert space

e The above result suggest to consider A = A+si/2

 The bi-spinor with shifted A by 1/2 is exactly proportional to the
eigenfunctions for scalar as

—VAepE,) = 4 (A= s8)" + 1) (s,

+ +
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Therefore, the mapping between boson and fermion becomes manifest.

e \We propose a SUSY Hilbert space

Scalar: {(bA,k(n, 0) i AeRyg, ke Z}
Spinor: {wi:—l—si (1,0) i ANeR, kelZ>g } .




Supersymmetric Hilbert space

e Complex eigenvalue:

. B 1
YYMDM??D;:_S%,k = L 1()\ + Sa)wi\t—l—s%,k

e |tis natural: for a space with boundary, the Dirac operator is no
longer hermitian.
c.f. non-hermiticity in a box [Bonneau, Faraut, Valent "01]

e Unlike the standard basis, there is no fermionic zero mode:

L]

If mass is +1/2, the kinetic operator I(VMDM — s/2) vanishes at

A = 0. But there is no spectrum at this point as spectral density of
the spinor basis is zero.

pypr (A +s3) = = ()\ + S%) tanh 7\



Supersymmetric Hilbert space

* Asymptotic behaviour : not vanishing at the asymptotic boundary as

+ Fi(k+1)0—siA
Y ~ iR 0msy, o

Atsi k (1to1)ve) = v

e Nevertheless, the SUSY basis form a delta-function normalizable
orthonormal basis as

Ok g 0 ) = 21 [ ddOVGWE,, JTOUE L = Bued(r = X)

* \We define the appropriate inner product without using hermitian
conjugate, “Euclidean inner product”.

e The projection condition of U(+) cancels the dominant term in

there inner product, making the inner product well-defined.



Supersymmetric Hilbert space

e Compatible with asymptotic boundary condition.
Asymptotic fall-off behavior of the fluctuation of fields is dictated by
variational principle.

05 = 0 at on-shell saddle requires
5¢:5¢(0)€_A¢77—|—---7 Aq5>%7
0P = 5¢(0)6_A‘“7 +--, Ay >0.

~ o327 .~ o 0m
 Note that the SUSY basis have Oag ~ € 2T, ¢A+8%7’€ © saturate
the bounds, being able to span all fluctuations above the bound.

cf. For the case 1/2 > Ay > 0, standard basis having 1/2 growth cannot
span the corresponding fluctuation.
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1-loop in SUSY Hilbert space

e Let us compare 1-loop partition function using SUSY and non-SUSY basis.

* Focus on contribution of spinors having kinetic term,

—1p (D + My)y

* A difference: SUSY Hilbert space does not suffer from zero modes

* |f there are zero modes, one need to separate out their regularized contribution
Zl—loop — szZ/

1-loop
e Use the heat kernel method.

1 [ ds _ 1 [ ds . 2
logZ¢ = 5/ /L2? K¢(s) — —5/ /L2§Trexp{—3(1L(lﬁ—|—M¢)) },

— /OO §/d2x\/§/cdzu¢(z) exp [—E(z+iLM¢)2}.
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1-loop in SUSY Hilbert space

e Standard basis vs. SUSY basis

iIm(2) 1Im(z)
21 21

Re(2) | Re(z)

The shift of the contour does not cross any pole and thus does
not change the result of the heat kernel.

e [ocal contribution of the heat kernel is unchanged, whereas the
global contribution (zero mode contribution) can be different differ.



1-loop in SUSY Hilbert space

* How can the 1-loop study using standard basis for black hole
entropy matches with supersymmetric result?

* Black hole near horizon geometry has additional geometry
to AdS,. e.g. AdS, x $?.

* Dirac operator along S? does not give zero mass in the
Kaluza-Klein tower, thus there is no zero mode even in the
standard basis.
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Concluding remarks

* \We have constructed supersymmetric basis for scalar and spinor
field by complexifying the spectrum of Dirac operator.

 We expect: complexified spectrum is pervasively necessary:
- For higher dimensions, i / 2 shift
- Vector, graviton multiplets should have complexified spectrum.

e SUSY Hilbert space for vector, graviton multiplet is an interesting
problem to study the supersymmetric black hole entropy.

e Quantum fluctuation of SUSY theory should reside in a SUSY
Hilbert space. Therefore, our construction provides a basic
foundation for quantum studies of SUSY theory on AdS..



Thank you.



Speculation

e Even not considering the supersymmetry, complexified spectrum seems
to be a ‘correct’ basis.

* Free from fermionic zero mode
e Elliptic boundary condition [Witten ’18]:
“This condition leads to a satisfactory perturbation theory of

Euclidean gravity on Euclidean space with boundary”

* Fermion modes survive at the boundary — Chiral boundary condition.
Anomaly inflow and n-invariant? [Yonekura, Witten 19]

e Global (zero mode) contribution can differ. Can we elaborate the
difference in detail?



