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Considering a broad range of participants, I would like to take this opportunity to 
introduce very interesting topics (to me) but boring looking subjects (complexity?, chaos?) in 
hep-th community. In the end, however, I hope you get to like them like I did.

I will try to convey motivations, history, basic ideas instead of too much technical details.

I think I am not so an expert on quantum information and its holographic avatar, so some 
introductory part of my talk may be based on premature thoughts. However, I hope my 
story is mature enough to make you get curious on the topics.

I will try to go slowly, so I may stop my talk in 30 minutes in the middle without finishing up 
all of my slides. I think it is ok, because the conclusion of my story is open anyway.
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Quantum complexity

why?
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Quantum Computer

Input state output state

Complexity

[Computer science] quantifying the difficulty of carrying out a task. (Computational) complexity
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Complexity

[Computer science] quantifying the difficulty of carrying out a task. (Computational) complexity

Quantum Computer Quantum Circuit~(Circuit) complexity

Minimal number of gates for the transformation from the reference to target state

| T i = U | Ri = gngn�1 · · · g2g1| Ri
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0〉 state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}

10

Universal gate sets = {a,b,c,d,e,f}
Ambiguity
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“Distance” between two sates?

does varying over Hamiltonians lead to an almost space-filling set on SU(2K)? The answer

is no; the number of parameters specifying H (the J ’s) is polynomial in K and given by

Eq. 2.10. Thus for a given k the dimension of the set covered by k-local evolution is only

slightly bigger than a 2K-dimensional subset.

On the other hand we may ask: For each Hamiltonian is the motion on the 2K-torus

ergodic? Generically the answer is yes. Ergodicity is equivalent to the incommensurability

of the energy eigenvalues, a condition which will be satisfied for almost all members of the

ensemble of J ’s.

To summarize, while the A-system is formally defined on a 4K-dimensional configura-

tion space, the e↵ective dimension of the system is actually much smaller ⇠ 2K .

In Sec. 2.1 we explained that by starting with a random time-dependent quantum

Hamiltonian, a stochastic system can be defined. That stochastic system can be thought

of as a classical stochastic version of the auxiliary system A. Reference [17] refers to such

systems as Brownian circuits. In that case, since the Hamiltonian is now time-dependent,

the motion on SU(2K) is a random walk not restricted to a torus—it fills up all 4K

dimensions and is ergodic on SU(2K).

4 Geometry of Complexity

4.1 The Distance Between Quantum States

Consider the question: how far apart are two quantum states |Ai and |Bi? The usual

measure of the distance between them is defined by

dAB = arccos |hB|Ai|. (4.1)

The distance dAB is bounded between 0 (when the two states are the same) and ⇡/2 (when

the two states are orthogonal). The metric defined by Eq. 4.1 is called the Fubini-Study

metric. It has the property that if dAB is very small then the expectation values of all

observables in the states |Ai and |Bi are very close. But this definition misses something

important. Suppose we have a very large number of qubits in a complicated pure state that

looks thermal, although it is actually pure. Now add one more qubit, either in state |0i or
state |1i. Let’s call the two states that we get this way |Ai and |Bi. They are orthogonal

so they are as far apart as possible according to Eq. 4.1. But in some sense they are not

very di↵erent; they only di↵er by the orientation of a single qubit.

14

0 ⇠ ⇡/2(closest) (farthest)(inner-product) distance:

1903.12621 Brown and Susskind

However, in some sense they are close

|0000000001i|0000000000iAre these close or far?

“easy” or “difficult” transform

Need a new distance reflecting this sense: “Complexity distance?”

Far in the inner-product sense

Complexity

Similarity vs Distance?
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~How hard (minimal number of gates) 

from the reference to target state

Complexity of quantum states

| T i = U | RiFor given states

New distance in Hilbert space

For a given operator

Complexity of operator (unitary transformation)

U = gngn�1 · · · g2g1 ~ minimum number of gates

I U

| (n)i = gn....g3g2g1| (0)i

= u(n)| (0)i. (3.1)

Here u(n) is an element of SU(2K). Let us think of 3.1 as defining a path in the space

SU(2K). This is schematically shown in the left side of figure 4. The path begins at

The left side shows a discrete path induced by a series of gates. The right side shows a
curve induced by a Hamiltonian evolution.

Figure 4: The shaded area represents the group manifold SU(2K).

u(0) = I and ends at u(n). The rule for such paths is that every link corresponds to a gate

and therefore displaces the endpoint by a one or two qubit operator.

With these concepts in hand we can define the complexity of a unitary operator u as

the smallest number of gates of any circuit that can yield u as an outcome. That is to say,

it is the number of links of the shortest allowable path connecting I and u.

In the past, random quantum circuits have been used to model black hole evolution

[7][1] but our real interest is in continuous Hamiltonian evolution. Part of the reason

for this paper is to draw attention to an innovation of Nielsen and collaborators [5][6]

who introduced a continuum description of complexity. Their purpose was to construct

an approximation to a quantum circuit that used Hamiltonian evolution and Riemannian

geometry. However, the methods of [5][6] seems well suited to the study of Hamiltonian

systems of the kind that may represent black hole evolution.

7

New distance in Unitary group

Complexity

Spread complexity

Krylov complexity

norm of H. In bases {eI}, H = eIY I and the metric components can be expressed as

g̃IJ =
1

2
@2F̃ (H)2/(@Y I@Y J), F̃ (H)2 = g̃IJY

IY J . (2.3)

Note that giving the norm F̃ is equivalent to giving a metric g̃IJ under a bases.
To obtain the metric in the group manifold with the coordinate XI , the metric needs

to be transformed by a coordinate transformation

gIJ(X) = g̃KLM
K

I (X)ML

J (X) , (2.4)

where the transformation matrix is defined as Y I(s)ds = M I

K
(X)dXK . (See appendix B

for a concrete example.) The complexity of an operator Ŵ (s) :=
 �P e

R s
0 iH(s̃)ds̃ , denoted by

C(Ŵ (s)), is defined by the minimal length of all curves which connect Ŵ (s) to identity:

C(Ŵ (s))) = min

Z
s

0
F̃ (H(s̃))ds̃ , (2.5)

where H(s̃) satisfy Ŵ (s) =
 �P e

R s
0 iH(s̃)ds̃.

After we obtain the complexity for all operators in the SU(n) group based on Eq. (2.5),
the complexity between two pure quantum states in an n-dimensional Hilbert space can be
expressed as the following optimal problem

C(| 1i, | 2i) = min
n
C(U) | 8 Û 2 O, | 2i = Û | 1i

o
, (2.6)

where the unitary operator may belong to some restricted set O, which is a subgroup of
SU(n) group and depends on detailed physical problems. Thus, the norm F̃ plays a central
role when we analyse the complexity in quantum systems. Once we obtain the norm F̃ ,
the metric in the SU(n) group (and its any subgroup) is computed. By this metric, the
minimal geodesic length connecting the identity and the target operator, which is nothing
but the complexity of the operator, is computed. The complexity between two states is the
minimal complexity of the operators shown in Eq. (2.6). In this paper, we will only focus
on the complexity of unitary operators.

Note that the complexity is right-invariant, because H itself is invariant under the
right-translation c ! cx̂ for 8x̂ 2 SU(n). However, for a left translation c(s) 7! x̂c(s), the
generator will be transformed as

H(s) 7! x̂H(s)x̂† ,

which is different from H(s) in general. If there is no additional symmetry, F̃ (H) 6=
F̃ (x̂Hx̂†), the complexity is not left-invariant but only right-invariant.

2.2 Bi-invariant complexity geometry

Nielsen’s (only) right-invariant complexity is a good tool for the studies on quantum com-
putation and quantum circuit systems. Many recent works such as [26–28] and [21, 25,
29, 37, 47] try to generalize this idea to the studies on QFT/QM. These works assume
that the complexity is only right-invariant. However, if the complexity in QFT/QM is only

– 3 –

Relation between two
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Continuous version
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0〉 state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

Ôn = �Ô(r)
n �Ô(r)

n�1 · · · �Ô
(r)
2 �Ô(r)

1 (3.4)
= �Ô(r)

n Ôn�1 (3.5)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,

– 6 –
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

– 6 –

U = gngn�1 · · · g2g1 Complexity = geodesic length?

A geometric approach to quantum circuit lower bounds (2008)

Susskind and collaborators

• introduced Nielsen’s idea to hep-th 

community in 2014

• have been developing the theory of 

complexity in QFT based on intuitions 
from circuit complexity
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~How hard (minimal number of gates) 

from the reference to target state

Complexity of quantum states

| T i = U | RiFor given states

norm of H. In bases {eI}, H = eIY I and the metric components can be expressed as

g̃IJ =
1

2
@2F̃ (H)2/(@Y I@Y J), F̃ (H)2 = g̃IJY

IY J . (2.3)

Note that giving the norm F̃ is equivalent to giving a metric g̃IJ under a bases.
To obtain the metric in the group manifold with the coordinate XI , the metric needs

to be transformed by a coordinate transformation

gIJ(X) = g̃KLM
K

I (X)ML

J (X) , (2.4)

where the transformation matrix is defined as Y I(s)ds = M I

K
(X)dXK . (See appendix B

for a concrete example.) The complexity of an operator Ŵ (s) :=
 �P e

R s
0 iH(s̃)ds̃ , denoted by

C(Ŵ (s)), is defined by the minimal length of all curves which connect Ŵ (s) to identity:

C(Ŵ (s))) = min

Z
s

0
F̃ (H(s̃))ds̃ , (2.5)

where H(s̃) satisfy Ŵ (s) =
 �P e

R s
0 iH(s̃)ds̃.

After we obtain the complexity for all operators in the SU(n) group based on Eq. (2.5),
the complexity between two pure quantum states in an n-dimensional Hilbert space can be
expressed as the following optimal problem

C(| 1i, | 2i) = min
n
C(U) | 8 Û 2 O, | 2i = Û | 1i

o
, (2.6)

where the unitary operator may belong to some restricted set O, which is a subgroup of
SU(n) group and depends on detailed physical problems. Thus, the norm F̃ plays a central
role when we analyse the complexity in quantum systems. Once we obtain the norm F̃ ,
the metric in the SU(n) group (and its any subgroup) is computed. By this metric, the
minimal geodesic length connecting the identity and the target operator, which is nothing
but the complexity of the operator, is computed. The complexity between two states is the
minimal complexity of the operators shown in Eq. (2.6). In this paper, we will only focus
on the complexity of unitary operators.

Note that the complexity is right-invariant, because H itself is invariant under the
right-translation c ! cx̂ for 8x̂ 2 SU(n). However, for a left translation c(s) 7! x̂c(s), the
generator will be transformed as

H(s) 7! x̂H(s)x̂† ,

which is different from H(s) in general. If there is no additional symmetry, F̃ (H) 6=
F̃ (x̂Hx̂†), the complexity is not left-invariant but only right-invariant.

2.2 Bi-invariant complexity geometry

Nielsen’s (only) right-invariant complexity is a good tool for the studies on quantum com-
putation and quantum circuit systems. Many recent works such as [26–28] and [21, 25,
29, 37, 47] try to generalize this idea to the studies on QFT/QM. These works assume
that the complexity is only right-invariant. However, if the complexity in QFT/QM is only

– 3 –

Relation between two

New distance in Hilbert space

For a given operator

Complexity of operator (unitary transformation)

U = gngn�1 · · · g2g1 ~ minimum number of gates

I U

| (n)i = gn....g3g2g1| (0)i

= u(n)| (0)i. (3.1)

Here u(n) is an element of SU(2K). Let us think of 3.1 as defining a path in the space

SU(2K). This is schematically shown in the left side of figure 4. The path begins at

The left side shows a discrete path induced by a series of gates. The right side shows a
curve induced by a Hamiltonian evolution.

Figure 4: The shaded area represents the group manifold SU(2K).

u(0) = I and ends at u(n). The rule for such paths is that every link corresponds to a gate

and therefore displaces the endpoint by a one or two qubit operator.

With these concepts in hand we can define the complexity of a unitary operator u as

the smallest number of gates of any circuit that can yield u as an outcome. That is to say,

it is the number of links of the shortest allowable path connecting I and u.

In the past, random quantum circuits have been used to model black hole evolution

[7][1] but our real interest is in continuous Hamiltonian evolution. Part of the reason

for this paper is to draw attention to an innovation of Nielsen and collaborators [5][6]

who introduced a continuum description of complexity. Their purpose was to construct

an approximation to a quantum circuit that used Hamiltonian evolution and Riemannian

geometry. However, the methods of [5][6] seems well suited to the study of Hamiltonian

systems of the kind that may represent black hole evolution.

7

New distance in Unitary group

Complexity

Spread complexity

Krylov complexity

Now, where is physics?

Entanglement entropy vs Complexity?

Is quantum theory explored enough? 


Mainly about superposition and symmetry? 

What about entanglement or something else?
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Figure 1: Eternal black hole with extremal surface anchored at the boundary
time t where t runs upwards in both CFT’s (Left Figure). As time evolves
upwards, the wormhole inside black holes keeps growing linearly with respect
to time t (Right Figure).

typically scales as the exponential of the entropy [9],

tmax ⇠ eS � ttherm ⇠ (S)p , (1.1)

where p is generically some O(1) number. One of the goals in this paper is
to have a better understanding of the time evolution of the complexity in
gauge theories both qualitatively and quantitatively.

It should be clear why we want to conduct analysis in gauge theories.
Needless to say, gauge theories are a core of our modern understanding of
physics describing not only all of the non-gravitational forces in our world
but also they describe gravity too via holography. In order to apply the
notion of the complexity, rather than spin systems, we have to deal with
gauge theories. In this paper, as a first step toward understanding the time
evolution of complexity in generic gauge theories, we study the complexity in
generic discrete Abelian gauge theories in 2+1 dimensions: namely generic
ZN gauge theories on a spatial two-dimensional lattice.

The reason why we consider ZN gauge theory is to discretize the continuous
gauge group so that we can handle it as if it is a qubit system. The gauge
group is recovered to U(1) in the limit N ! 1. For the same reason, we
adopt a lattice regularization for the two-dimensional space.2 Taking into
account a gauge invariance, we may consider only physical operators for the
universal gate sets, which we will explain later, and evaluate the complexity
of the theory. Note that Z2 gauge theory is essentially the same as Kitaev’s
toric code [11].

typically scales as the entropy of the system.
2Generalization to higher dimensions, or to multiple U(1) gauge group is straightfor-

ward.

3

Fig. from [Koji, Norihiro, Sotaro: 1707.03840] 

[Susskind: 1402.5674

 Stanford and Susskind: 1406.2678] 

1. Einstein-Rosen bridge increases even after thermalization

2. The field theory meaning of this?

3. Physics inside black hole?

As for the first equation in 1.6, one additional point is that almost all states are exponen-

tially complex. The statements about time scales for thermalization, maximum complexity,

and recurrences are assuming the actual evolution of the system is generated by what I’ll

call an easy Hamiltonian. An easy Hamiltonian is one that is a sum of simple Hermitian

operators: a simple Hermitian being one involving a small number of qubits—to be specific

one and two-qubit terms. The evolution by easy Hamiltonian is analogous to evolution be

a quantum circuit composed of simple gates.

The thing to notice is the spectacular di↵erence between the classical and quantum

maximal entropy and maximal complexity. The time ttherm is the time to achieve maxi-

mal entropy, while the time tcomp is the time to achieve maximal complexity. Quantum

mechanically those times are vastly di↵erent. What this proves is that there are subtle

changes that take place in a chaotic quantum system long after it has come to thermal

equilibrium. Complexity is a real property of a quantum state, but normally we are not

interested in it because the information that it encodes does not show up in ordinary local

properties. However, it seems that the incredibly subtle correlations encoding complexity

correspond to global unsubtle properties of the inside geometry of black holes [6][7][8][9].

Another point is that the state of a system does not become generic at the thermaliza-

tion time. It takes an exponential time to reach the complexity of a generic state. A graph

of the increase of complexity for a typical chaotic system looks like figure 1. It increases

Figure 1

linearly for a long time, but since the complexity is bounded by an exponential in K the

growth must saturate at logC ⇠ K. On the same graph the history leading up to thermal

equilibrium would occupy a tiny region shown schematically in the red circle.

6

Entanglement is not enough?

Complexity

2014: 

Entanglement is not enough!


Black hole interior?

2017 

Complexity in Field theory?
Complexity = geodesic length?



Quantum Chaos

Why?



Quantum Chaos

Why?

Classical Physics Quantum physics

Classical  Chaos Quantum chaos

ℏ → 0

ℏ → 0

We do not need to stick to classical concept, 

which may be sometimes obstruction 
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Quantum Chaos

Level spacing statistics 

Thermalization

(ETH, Quantum device)

Quantum black holes


Quantum gravity

Out-of-time-order correlator 

(OTOC) 

Random Matrix Theory

Krylov complexity?
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Quantum chaos and complexity

Midjourney




"Krylov complexity” is a well-defined concept

proposed as a diagnose of quantum chaos (which is not-well defined) 

Complexity: how much things are complex
Chaos: how fast things get complex 


                    ~ fast increase of complexity

Comments on quantum chaos and complexity

*Circuit complexity is not well-defined

Comments on Krylov Complexity in Field Theory



"Krylov complexity” is a well-defined concept

proposed as a diagnose of quantum chaos (which is not-well defined) 

Complexity: how much things are complex
Chaos: how fast things get complex 


                    ~ fast increase of complexity

Comments on quantum chaos and complexity

*Circuit complexity is not well-defined

Comments on Krylov Complexity in Field Theory

Entanglement is not enough!

Black hole interior?
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Contents

Short Review on Krylov Complexity 

- Operator growth 

- Krylov space 

- Lanczos coefficient


   -  Krylov complexity


Success in lattice systems


Towards field theory 

- Too good to be true 

- How to extract info from the power spectrum 

  (IR/UV cutoff effect)

Cornelius (Cornel) Lanczos (1893-1974): 

a Hungarian-American and later Hungarian-Irish

mathematician and physicist.

Aleksey Nikolaevich Krylov (1863 –1945)

a Russian naval engineer, applied mathematician 


and memoirist.

1994



Short Review on Krylov Complexity
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ex) 1D spin chain

Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.
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ex) 1D spin chain

Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.
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Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.

The set of operators         defines a basis of the so-called Krylov space associated to the operator

Regard the operator as a state               in the Hilbert space of operators 

{𝒪̃n} 𝒪
𝒪 → |𝒪)

(Lanczos algorithm: Gram–Schmidt procedure) 

Inner product: Wightman inner product

Krylov basis

: Lanczos coefficients 
{bn}
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Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

1812.08657: Parker et al.

The set of operators         defines a basis of the so-called Krylov space associated to the operator

Regard the operator as a state               in the Hilbert space of operators 

{𝒪̃n} 𝒪
𝒪 → |𝒪)

(Lanczos algorithm: Gram–Schmidt procedure) 

Inner product: Wightman inner product

Krylov basis

: Lanczos coefficients 
{bn}

“probability amplitudes” 
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Krylov complexity

Krylov complexity

Discrete “Schrodinger equation”

“probability amplitudes” 

bn = hopping amplitudes 
a quantum-mechanical particle on a 1- dimensional chain. 

average position over the chain 

1812.08657: Parker et al.
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K-complexity from the auto-correlation function 

Auto-correlation function

ΠW(t) =
1

2π ∫
∞

−∞
dω e−iωt fW(ω)

C(t) = ΠW(t) = φ0(t)

Moments

Lanczos coefficients from moments 

fW(ω)

μ2n

Hankel matrix 

constructed from the moments. 

1812.08657: Parker et al.

Power spectrum
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Computation method

Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

1812.08657: Parker et al.



Success in lattice systems
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Universal operator growth hypothesis

Lanczos coefficients {bn} grow as fast as possible
Krylov complexity grows exponentially 

the slowest possible decay of the power spectrum 
In a chaotic quantum system

bn ∼ αn

fW(ω) ∼ e− π |ω |
2α

Universal operator growth hypothesis

fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

1812.08657: Parker et al.

fW(ω) ∼ e− ω
ω0 Is a signature of classical chaos
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Universal operator growth hypothesis

Lanczos coefficients {bn} grow as fast as possible
Krylov complexity grows exponentially 

the slowest possible decay of the power spectrum 
In a chaotic quantum system

bn ∼ αn

fW(ω) ∼ e− π |ω |
2α

fW(ω)

Universal operator growth hypothesis

fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

1812.08657: Parker et al.



Towards Field theory
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Free massive scalar in d-dimensions

Wightman 2-point function

Power spectrum

fW(ω) μ2n bn

2212.14702: Camargo, 

Jahnke, KYK, Nishida

m=0, d=4

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α
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Counter example in QFT

Lanczos coefficients {bn} grow as fast as possible?? 
In a chaotic quantum system In free QFT

bn ∼ αn ∼
π
β

n

Power spectrum (m=0, d=4)

2212.14429: Avdoshikin, Dymarsky, Smolkin
2212.14702: Camargo, Jahnke, KYK, Nishida

Free theory is chaotic?

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α (α =
π
β )

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺
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Lanczos coefficients {bn} grow as fast as possible! 
In a chaotic quantum system In general QFT

bn ∼ αn ∼
π
β

n

Power spectrum (m=0, d=4)

2212.14429: Avdoshikin, Dymarsky, Smolkin
2212.14702: Camargo, Jahnke, KYK, Nishida

General QFT is chaotic?  No

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α (α =
π
β )

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Power spectrum

(α =
π
β )

(t =
iβ
2 )

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α

Wightman 2-point function

Subtlety in QFT

Too good to be true

2104.09514: Dymarsky, Smolkin



Towards Field theory



bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Only if bn is a smooth function of n, Otherwise

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Too good to be true

Chaos

Chaos ⟺

⟺

Counter example: 

Field theory

Krylov complexity in saddle-dominated scrambling 
(2203.03534: Bhattacharjee, Cao, Nandy, Pathak)

fW(ω)



fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Only if bn is a smooth function of n, Otherwise

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Too good to be true

Chaos

Chaos ⟺

⟺

Counter example: 

Field theory

Krylov complexity in saddle-dominated scrambling 
(2203.03534: Bhattacharjee, Cao, Nandy, Pathak)

Need to investigate these relations further.

How to extract (chaotic) information from the power spectrum?

m
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Computation method

Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

1812.08657: Parker et al.



46

Non-trivial mass (IR-cutoff) effect: staggering

Power spectrum

Moments to Lanczos coefficients (d=5)

Staggering: two families for even n and odd n

mβ = 80

2212.14702: Camargo, Jahnke, KYK, Nishida
2212.14429: Avdoshikin, Dymarsky, Smolkin
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Staggering

α ≤
π
β

2212.14702: Camargo, 

Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: staggering

mβ = 80

mβ

e− β |ω |
2

m
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Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

2212.14702: Camargo, 

Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity
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Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

Early time: oscillation:  
- larger m, shorter period

Late time: oscillation disappears 
- cancelation due to large n

Exponential increase 
- larger m, slower increase 
- mass effect

2212.14702: Camargo, 

Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity
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2212.14702: Camargo, 

Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity
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2212.14702: Camargo, 

Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity

K𝒪(t) ∼ eλ̃t

Staggering

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺
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m=0, d=4

fW(ω)

Non-trivial UV-cutoff effect 2212.14702: Camargo, 

Jahnke, KYK, Nishida
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Condition for staggering 2212.14702: Camargo, 

Jahnke, KYK, Nishida
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Condition for staggering 2212.14702: Camargo, 

Jahnke, KYK, Nishida
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Condition for staggering 2212.14702: Camargo, 

Jahnke, KYK, Nishida
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Condition for staggering 2212.14702: Camargo, 

Jahnke, KYK, Nishida



2306.11632: Camargo, Jahnke, Jeong, KYK, Nishida
2305.16669: Hashimoto, Murata, Tanahashi, Ryota Watanabe 

2112.12128: Rabinovici, Sanchez-Garrido, Shir, Sonner
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Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

Summary (method)

Is it possible to extract the chaos-info from a C(t) or the power spectrum?  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Lanczos coefficients {bn} grow as fast as possible

Krylov complexity grows exponentially 

the slowest possible decay of the power spectrum 

In a chaotic quantum system

bn ∼ αn

fW(ω) ∼ e− π |ω |
2α

Universal operator growth hypothesis

Summary (Lattice systems)

Subtleties in QFT

Is it possible to extract the chaos-info from a C(t) or a power spectrum?  
- Seems to be possible for Lattice systems.

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Subtleties in saddle point



60

Staggering

α ≤
π
β

mβ = 80

mβ

e− β |ω |
2

m

Summary (QFT)

Need to take into account 

Low frequency behavior
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K𝒪(t) ∼ eλ̃t

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Only if bn is a smooth function of n, Otherwise

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Summary (QFT)
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m=0, d=4

fW(ω)

Is it possible to extract the chaos-info from a C(t) or a power spectrum?

More scales: compact space, interaction, other spins, open systems etc

Holographic counterpart?

State (spread) complexity?

Observations, conjectures, mathematical justification

Summary (QFT)
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tL

tR

rh

B

tL

tR

rh

WDW

Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of

the eternal AdS black hole (see Fig. 1) and T is the temperature. With the Hamiltonians

HL and HR at the left and right dual CFTs, the time evolution of a TFD state

| (tL, tR)i := e
�i(tLHL+tRHR)

|TFDi (1.2)

can be characterized by the codimension-two surface at fixed times t = tL and t = tR at

the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the

complexity of | (tL, tR)i state holographically: CV(complexity=volume) conjecture and

CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.

– 2 –

This unsatisfactory feature motivated the second conjecture: CA conjecture [9, 10]. In

this conjecture, the complexity of a | (tL, tR)i is dual to the action in the Wheeler-DeWitt

(WDW) patch associated with tL and tR, i.e.

CA =
IWDW

⇡~ . (1.4)

The WDW patch associated with tL and tR is the collection of all space-like surface con-

necting tL and tR with the null sheets coming from tL and tR. More precisely it is the

domain of dependence of any space-like surface connecting tL and tR (see the right panel of

Fig. 1 as an example). This conjecture has some advantages compared with the CV con-

jecture. For example, it has no free parameter and can satisfy Lloyd’s complexity growth

bound in very general cases [13–15]. However, the CA conjecture has its own obstacle in

computing the action: it involves null boundaries and joint terms. Recently, this problem

has been overcome by carefully analyzing the boundary term in null boundary [16, 17].

As both the CV and CA conjectures involve the integration over infinite region, the

complexity computed by the Eqs. (1.3) and (1.4) are divergent. The divergences appearing

in the CV and CA conjectures are similar to the one in the holographic entanglement

entropy. It was shown that the coe�cients of all the divergent terms can be written as the

local integration of boundary geometry [18, 19], which is independent of the bulk stress

tensor. This result gives a clear physical meaning of the divergences in the holographic

complexity: they come from the UV vacuum structure at a given time slice and stand for

the vacuum CFT’s contribution to the complexity. One interesting thing is to consider the

contribution of excited state or thermal state to the complexity. As the divergent parts of

the holographic complexity is fixed by the boundary geometry, the contribution of matter

fields and temperature can only appear in the finite term of the complexity. This gives us

a strong motivation to study how to obtain the finite term in the complexity.

The first work regarding this finite quantity is the “complexity of formation” [20],

which is defined by the di↵erence of the complexity in a particular black hole space time

and a reference vacuum AdS space-time. By choosing a suitable vacuum space-time, we

can obtain a finite complexity of formation. However, there are two somewhat ambiguous

aspects in using “complexity of formation” to study the finite term of complexity. First,

we need to appoint additional space-time as the reference vacuum background. In general

cases, it will not be obvious how to choose the reference vacuum space-time. For example,

in Ref. [20], the reference vacuum space-time for the BTZ black hole is not the naive

limit of setting mass M = 0. Second, to make the computation about the di↵erence of

complexity at the finite cut-o↵ between two space-times meaningful, we need to appoint

a special coordinate and apply this coordinate to both space-times. For example, in the

Ref. [20], the holographic complexity of two space-time at the finite cut-o↵ is computed in

Fe↵erman-Graham coordinate [21, 22]. It will be better if we can compute the complexity

without referring to a specific coordinate system.

As the Refs. [18, 19] have shown that the divergent terms have some universal struc-

tures, a naive consideration is that, we can separate the divergent term and just discard

them. However, this may give a coordinate dependent result as we shows in the section

– 3 –

- Equation of motion

- Free scale: ambiguity

- Boundary terms

- Singularity

[Susskind: 1402.5674

 Stanford and Susskind: 1406.2678] 

[Brown, Roberts, Susskind Swingle and Zhao: 

                       1509.07876, 1512.04993]

Holographic conjecture

J
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7
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7

Figure 1. Complexity=volume (CV, left) and complexity=action (CA, right) for the eternal AdS
black hole dual to the thermofield double state (1.1). In the left panel, the blue curve represents the
maximal spacelike surfaces that connects the specified time slices on the left and right boundaries.
In the right image, the shaded region is the corresponding WDW patch.

This question is the focus of the present paper. Specifically, our objective is to provide

the first steps towards defining circuit complexity in quantum field theory (QFT).1 A precise

understanding of this quantity will not only shed light on the CV and CA proposals, but

is also an interesting question deserving of study in its own right. For example, it may

also provide new insights into quantum algorithms for the simulation of quantum field

theories [28–31], or more generally into Hamiltonian complexity [32, 33], or the efficient

description of many-body wave functions [34, 35].

In computer science, the notion of computational complexity refers to the minimum

number of operations necessary to implement a given task [36, 37]. In the present context,

the task of interest will be the preparation of a state in the QFT, and we will define the

complexity in terms of a quantum circuit model. That is, we will begin with a simple

reference state |ψR〉, and construct a unitary transformation U that produces the desired

target state |ψT〉 via
|ψT〉 = U |ψR〉 . (1.4)

The unitary U will be constructed from a particular set of simple elementary or universal

gates, which can be applied sequentially to the state. When working with such discrete

operations, we should also introduce a tolerance ε so that even if we cannot achieve the

precise equality above, we may still judge the transformation to be successful when the two

states are sufficiently close to one another according to some distance measure, i.e.,

∣∣∣∣ |ψT〉 − U |ψR〉
∣∣∣∣2 ≤ ε . (1.5)

Of course, there will not be a unique circuit which implements the desired transforma-

tion (1.4): generally there will exist infinitely many sequences of gates which produce the

1We also refer the reader to ref. [27] for a recent complementary investigation in this direction.
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Figure 1. Complexity=volume (CV, left) and complexity=action (CA, right) for the eternal AdS
black hole dual to the thermofield double state (1.1). In the left panel, the blue curve represents the
maximal spacelike surfaces that connects the specified time slices on the left and right boundaries.
In the right image, the shaded region is the corresponding WDW patch.

This question is the focus of the present paper. Specifically, our objective is to provide

the first steps towards defining circuit complexity in quantum field theory (QFT).1 A precise

understanding of this quantity will not only shed light on the CV and CA proposals, but

is also an interesting question deserving of study in its own right. For example, it may

also provide new insights into quantum algorithms for the simulation of quantum field

theories [28–31], or more generally into Hamiltonian complexity [32, 33], or the efficient

description of many-body wave functions [34, 35].

In computer science, the notion of computational complexity refers to the minimum

number of operations necessary to implement a given task [36, 37]. In the present context,

the task of interest will be the preparation of a state in the QFT, and we will define the

complexity in terms of a quantum circuit model. That is, we will begin with a simple

reference state |ψR〉, and construct a unitary transformation U that produces the desired

target state |ψT〉 via
|ψT〉 = U |ψR〉 . (1.4)

The unitary U will be constructed from a particular set of simple elementary or universal

gates, which can be applied sequentially to the state. When working with such discrete

operations, we should also introduce a tolerance ε so that even if we cannot achieve the

precise equality above, we may still judge the transformation to be successful when the two

states are sufficiently close to one another according to some distance measure, i.e.,

∣∣∣∣ |ψT〉 − U |ψR〉
∣∣∣∣2 ≤ ε . (1.5)

Of course, there will not be a unique circuit which implements the desired transforma-

tion (1.4): generally there will exist infinitely many sequences of gates which produce the

1We also refer the reader to ref. [27] for a recent complementary investigation in this direction.
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Fig. from [Jefferson, Myers: 1707.08570] 

CV (complexity-volume) CA (complexity-action)

2017 

Complexity in Field theory?

Complexity = geodesic length?

2014 

Entanglement is not enough!


Black hole interior?

F
2 ⇠ TrHH

† ⇠ H
a
H

bTrTaTb ⇠ H
a
H

b
gab

F
2 ⇠ TrHMH

† ⇠ H
a
H

bTrTaMTb ⇠ H
a
H

b
g
M
ab

<latexit sha1_base64="yLN0aYVD8+kJnszxX2lzEp66iEI=">AAACn3icjVFda9swFJW9dc3SbkvXx/VBa0jZU7DLoH0MGbSGNSWDpEmJY3OtKK6oZBtJHgSTv9Ufsrf9m8lOKEmzwS4IDueee3Q/oowzpR3nt2W/er33Zr/2tn5w+O79h8bRxzuV5pLQIUl5KscRKMpZQoeaaU7HmaQgIk5H0eO3Mj/6SaViaTLQi4xOBcQJmzMC2lBh4+kqOMdnvmIC+wL0gxTFQC6xh73An0EcU4mrpBeAF0SbmmIQAh6E0fJZgEtFHBYQLeu+X/+Xc+8/vXvb7qUEx0Gv8g8bTaftVIF3gbsGTbSOftj45c9SkguaaMJBqYnrZHpagNSMcGr6zRXNgDxCTCcGJiComhbVfpe4ZZgZnqfSvETjit2sKEAotRCm2VY5g3qZK8m/5Sa5nl9OC5ZkuaYJWX00zznWKS6PhWdMUqL5wgAgkpleMXkACUSbk9bNEtyXI++Cu/O267TdH1+bne56HTX0CZ2iL8hFF6iDPNRHQ0SsE6trfbdu7M/2tX1r91dS21rXHKOtsO//ABdryWs=</latexit><latexit sha1_base64="yLN0aYVD8+kJnszxX2lzEp66iEI=">AAACn3icjVFda9swFJW9dc3SbkvXx/VBa0jZU7DLoH0MGbSGNSWDpEmJY3OtKK6oZBtJHgSTv9Ufsrf9m8lOKEmzwS4IDueee3Q/oowzpR3nt2W/er33Zr/2tn5w+O79h8bRxzuV5pLQIUl5KscRKMpZQoeaaU7HmaQgIk5H0eO3Mj/6SaViaTLQi4xOBcQJmzMC2lBh4+kqOMdnvmIC+wL0gxTFQC6xh73An0EcU4mrpBeAF0SbmmIQAh6E0fJZgEtFHBYQLeu+X/+Xc+8/vXvb7qUEx0Gv8g8bTaftVIF3gbsGTbSOftj45c9SkguaaMJBqYnrZHpagNSMcGr6zRXNgDxCTCcGJiComhbVfpe4ZZgZnqfSvETjit2sKEAotRCm2VY5g3qZK8m/5Sa5nl9OC5ZkuaYJWX00zznWKS6PhWdMUqL5wgAgkpleMXkACUSbk9bNEtyXI++Cu/O267TdH1+bne56HTX0CZ2iL8hFF6iDPNRHQ0SsE6trfbdu7M/2tX1r91dS21rXHKOtsO//ABdryWs=</latexit><latexit sha1_base64="yLN0aYVD8+kJnszxX2lzEp66iEI=">AAACn3icjVFda9swFJW9dc3SbkvXx/VBa0jZU7DLoH0MGbSGNSWDpEmJY3OtKK6oZBtJHgSTv9Ufsrf9m8lOKEmzwS4IDueee3Q/oowzpR3nt2W/er33Zr/2tn5w+O79h8bRxzuV5pLQIUl5KscRKMpZQoeaaU7HmaQgIk5H0eO3Mj/6SaViaTLQi4xOBcQJmzMC2lBh4+kqOMdnvmIC+wL0gxTFQC6xh73An0EcU4mrpBeAF0SbmmIQAh6E0fJZgEtFHBYQLeu+X/+Xc+8/vXvb7qUEx0Gv8g8bTaftVIF3gbsGTbSOftj45c9SkguaaMJBqYnrZHpagNSMcGr6zRXNgDxCTCcGJiComhbVfpe4ZZgZnqfSvETjit2sKEAotRCm2VY5g3qZK8m/5Sa5nl9OC5ZkuaYJWX00zznWKS6PhWdMUqL5wgAgkpleMXkACUSbk9bNEtyXI++Cu/O267TdH1+bne56HTX0CZ2iL8hFF6iDPNRHQ0SsE6trfbdu7M/2tX1r91dS21rXHKOtsO//ABdryWs=</latexit><latexit sha1_base64="yLN0aYVD8+kJnszxX2lzEp66iEI=">AAACn3icjVFda9swFJW9dc3SbkvXx/VBa0jZU7DLoH0MGbSGNSWDpEmJY3OtKK6oZBtJHgSTv9Ufsrf9m8lOKEmzwS4IDueee3Q/oowzpR3nt2W/er33Zr/2tn5w+O79h8bRxzuV5pLQIUl5KscRKMpZQoeaaU7HmaQgIk5H0eO3Mj/6SaViaTLQi4xOBcQJmzMC2lBh4+kqOMdnvmIC+wL0gxTFQC6xh73An0EcU4mrpBeAF0SbmmIQAh6E0fJZgEtFHBYQLeu+X/+Xc+8/vXvb7qUEx0Gv8g8bTaftVIF3gbsGTbSOftj45c9SkguaaMJBqYnrZHpagNSMcGr6zRXNgDxCTCcGJiComhbVfpe4ZZgZnqfSvETjit2sKEAotRCm2VY5g3qZK8m/5Sa5nl9OC5ZkuaYJWX00zznWKS6PhWdMUqL5wgAgkpleMXkACUSbk9bNEtyXI++Cu/O267TdH1+bne56HTX0CZ2iL8hFF6iDPNRHQ0SsE6trfbdu7M/2tX1r91dS21rXHKOtsO//ABdryWs=</latexit>

2020 

decay of activities


