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1 My memory with Prof. Chaiho Rim

� J. H. Oh, J. Park and C. Rim, “Annulus amplitude of FZZT branes revisited,” [arXiv:1109.5465
[hep-th]].

� Frequently visited Geo-Gu-Jang to have dinner or lunch during the period of collaboration
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2 I do not get into holography yet.

� A chance to have discussion with Prof. Kim Ki-seok in POSTECH(at Field 23.4 in
Hanyang)

� Now I am learning related stuffs. This talk is based on “Udo Seifert, Phys. Rev. Lett.
95.040602” and Kirone Mallick et. al.,“J. Phys. A: Theor. 44(2011) 095002.

3 Entropy Production of a Single Trajectory

Stochastic dynamics describes irreversible process, where particle’s energy is dissipated into its
surrounding medium. One might guess if the stochastic process is related to thermodynamic
second law, if entropy does not decrease as the system progresses. Even for a single particle
injected into a medium, one can discuss this as follows.
————————————————————————————————————————

Consider a stochastic process of a single particle being given by

ẋ ≡ ∂x

∂τ
= −µF (x, λ(τ)) + ζ(τ), (1)

where λ(τ) is a reparametrization of time τ , F is the force, and ζ is a Gaussian noise. The
force F is given by

F (x, λ(τ)) = −∂xV (x, λ(τ)) + f (x, λ(τ)) , (2)

where V is a potential and f is an external force. The Gaussian noise ζ satisfies

⟨ζ(τ)ζ(τ ′)⟩ = 2Dδ(τ − τ ′), (3)

where D is the diffusion constant. Einstein relation, D = µT .
————————————————————————————————————————

Expectation value x(τ) is the particle trajectory. For a operator O, its expectation value
is defined by

⟨O(τ)⟩ =
∫

dxO(x, τ)p(x, τ), (4)

where p(x, τ) is the probability distribution to find the particle at x at given time τ .
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Fokker-Planck equation Equivalently, one can derive Fokker-Planck equation, which de-
scribe evolution of the probability p(x, τ) along the trajectory. This is given by a form of
conservation equation for p(x, τ):

∂τp(x, τ) = −∂xj(x, τ) = −∂x {(µF (x, λ)−D∂x) p(x, τ)} , (5)

The j is the probability current being given by

j(x, τ) = µF (x, λ) p(x, τ)−D∂xp(x, τ). (6)

————————————————————————————————————————

Now consider the entropy expectation value

S(τ) ≡ ⟨s(τ)⟩ = −
∫

dxp(x, τ) log p(x, τ), (7)

where
s(τ) = − log p(x, τ). (8)

The entropy production is written as

ṡ(τ) = −∂τp(x, τ)

p(x, τ)
− ∂xp(x, τ)

p(x, τ)
ẋ(τ) (9)

= −∂τp(x, τ)

p(x, τ)
+

ẋ(τ)

p(x, τ)

(
j(x, τ)

D
− µF (x, λ)

D
p(x, τ)

)
. (10)

We may interpret the last term as a dissipation heat from the particle to the medium, which
can be written as

T ṡm(τ) = F (x, λ)
dx

dτ
=

dW

dτ
, (11)

where ṡm is the entropy increase of the medium, and T = D/µ is the temperature.
————————————————————————————————————————

Hence we may define the total entropy production as

Ṡtot ≡ ⟨ṡtot(τ)⟩ ≡
∫

dxṡtotp(x, τ) (12)

=

∫
dx

∂τp(x, τ)

p(x, τ)
p(x, τ) +

∫
dx

j(x, τ)

Dp(x, τ)
ẋp(x, τ) (13)

=

∫
dx∂xj(x, τ) +

∫
dx

j(x, τ)

D

j(x, τ)

p(x, τ)
(14)

=

∫
dx

j2(x, τ)

Dp(x, τ)
≥ 0, (15)
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where we use j(x, τ) = p(x, τ)ẋ(τ). The total entropy production is positive semi-definite and
the equality holds if it is a reversible process.
————————————————————————————————————————

4 Fluctuation Theorem

This entropy production may be related to fluctuation theorem. What we interested in is the
ratio of probability of a single particle’s path to it time reversed probability.

Time reversal We define the time reversal quantities by

λ̃(τ) = λ(t− τ), (16)

x̃(τ) = x(t− τ), (17)

with initial and final boundary conditions

x0 ≡ x(0) = x̃t ≡ x̃(t), (18)

xt ≡ x(t) = x̃0 ≡ x̃(0). (19)

Ratio of conditional probabilities to its time reversed one Consider the following
quantity:

∆sm =

∫ t

0

dτ
F (x, τ)

T
ẋ = log

p[x(t)|x0]

p̃[x̃(t)|x̃0]
, (20)

where p[x(t)|x0] denotes the probability to find the particle at position x at time τ = t given
that the particle was found at position x0 at time τ = 0.
————————————————————————————————————————

Define a quantity R by

R[x(τ), λ(τ); p0, p1] ≡ log
p[x(t)|x0]p0(x0)

p̃[x̃(t)|x̃0]p1(x̃0)
= ∆sm + log

p0(x0)

p1(xt)
= ∆sm +∆s. (21)

Then the expectation value of e−R is

⟨e−R⟩ ≡
∫

dxp[x(τ)]e−R =
∑

all possible x(τ)

p(x(τ))e−R (22)

=
∑

x(τ),x0

p[x(τ)|x0] p0(x0)e
−R (23)

=
∑

x̃(τ),x̃0

p̃[x̃(τ)|x̃0] p̃0(x̃0) (24)

= 1, (25)

where the third line is obtained by the definition of R. This statement is nothing but
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� If x(τ) satisfies Fokker-Plank equation, p1(xt) = p(x, τ), and then

⟨e−[∆sm+∆s]⟩ = ⟨e−∆stot⟩ = 1 (26)

� This also means that ⟨∆stot⟩ ≥ 0.

5 Appendix

Definition of conditional probability

pl|k (yk+1, tk+1; . . . ; yk+l, tk+l | y1, t1; . . . ; yk, tk) ≡
pk+l(y1, t1; . . . ; yk+l, tk+l)

pk(y1, t1; . . . ; yk, tk)
. (27)

Definition of noise probability

p(η) =
exp

(
− 1

4D

∫
dτη2(τ)

)∫
Dη exp

(
− 1

4D

∫
dτη2(τ)

) . (28)

————————————————————————————————————————

5.1 The ratio of conditional probabilities

Consider an identity of 1 =
∫
x(0)=x0

dζ(τ)δ[c− ζ] for an arbitrary function c. Then, we modify

this identity as

1 =

∫
x(0)=x0

dx(τ)δ (ẋ− µF (x, λ)− ζ)J
(
δζ

δx

)
(29)

=

∫
x(0)=x0

dx(τ)dx̄(τ) exp

{
−
∫

dτx̄ [ẋ− µF (x, λ)− ζ]

}
J

(
δζ

δx

)
, (30)

where J denotes the Jacobian factor.

————————————————————————————————————————
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Conditional probability The conditional probability to find the particle at x = x1 under
the condition that it was at x = x0 is given by

p(x1|x0) ≡
∫

Dζ exp

[
− 1

4D

∫
dτζ2(τ)

]
δ(x(tf )− x1)× 1 (31)

=

∫
Dζ exp

[
− 1

4D

∫
dτζ2(τ)

]
δ(x(tf )− x1) (32)

×
∫
x(0)=x0

dx(τ)dx̄(τ) exp

{
−
∫

dτx̄ [ẋ− µF (x, λ)− ζ]

}
J

(
δζ

δx

)
.

Perform the Gaussian integral with the noise field ζ first as∫
Dζ exp

[
− 1

4D

∫
dτ

(
ζ2(τ) + 4Dx̄ζ

)]
=

∫
Dζ exp

[
− 1

4D

∫
dτ (ζ(τ) + 2Dx̄)2

]
eD

∫
dτx̄2

.

(33)

We also use
δζ

δx(τ ′)
=

d

dτ
(δ(τ − τ ′))− µ

δF (x, λ)

δx
, (34)

With all these, we have (32) becomes

p(x1|x0) =

∫
x(0)=x0

[dx(τ)]dx̄(τ) exp

{
−
∫

dτx̄ [ẋ− µF (x, λ)−Dx̄]− µ
δF

δx

}
δ(x(tf )− x1),

(35)

where [dx(τ)] ≡
∏

x(τ) {δ(x(τ)− xs(τ))} dx(τ) for a given trajectory of xs(τ).
————————————————————————————————————————

Now, we consider the following transform x̄ into

x̄ −→ −x̄− µF

D
. (36)

Then, the terms at the square bracket in the exponent of (35) transform as

x̄ [ẋ− µF (x, λ)−Dx̄] −→ x̄

[
−ẋ− µF

D
−Dx̄

]
− µF

D
ẋ. (37)

Now let us apply time reversal transform as t −→ tf − t. Then, ẋ −→ − ˙̃x, and so we have

p̃(x1|x0) =

∫ x̃(tf )=x0

x̃(0)=x1

[dx̃(τ)]dx̄(τ) exp

[
−
∫

dτx̄

(
˙̃x− µF

D
− x̄

)]
e
∫ t
0 dτ µF

D
ẋ (38)

= p̃(x0|x1) exp

{∫ t

0

dτ
µF

D
ẋ

}
= p̃(x̃1|x̃0) exp

∫ t

0

dτ
F

T
ẋ
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The second equality is hold for any given(single) path, x(τ) and so x̃(τ).
————————————————————————————————————————
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