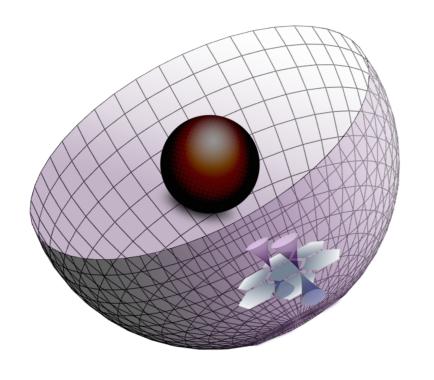
Holography and A new quantum ground state with Kondo condensation



Sang-Jin Sin (Hanyang U.)

2023.08.01@cquest.Jeonju

Based on

https://doi.org/10.1038/s41567-022-01930-3

Nature Physics (2023)

Late Prof. Rim, Chaiho

• ICTP 1991(31years ago): Rome, Veneccia, ...

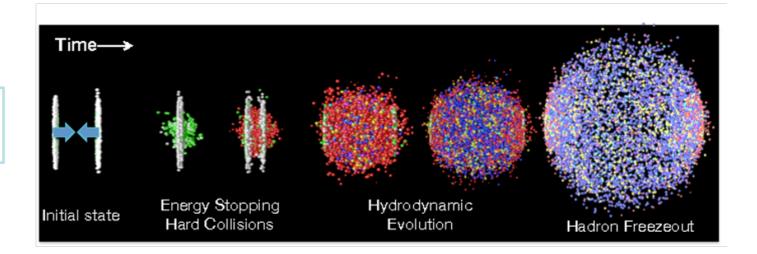
A few example of evidence of the AdS/CMT

- I. Graphene
- II. Topological stability of Fermi-liquid
- III. Random Kondo problem*

Character of strong coupling:

- i. Loss of Quasi particle=> make hard
- ii. Non-causal correlation=> make easy

Heavy ion collision



No time to equilibrate with causal contacts.

==>

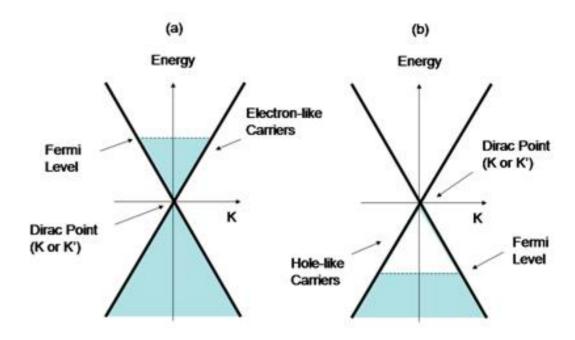
I.
$$\eta/s = \text{shear vis./(entropy d.)} = \frac{\hbar}{4\pi k_B} \sim \text{universal,}$$

cf: $\eta/s \sim 1/g^2$, in $g\phi^4$ theory.

II. Plankian Dissipation. $\rho \sim T$

I. Graphene

Relativistic fermion in the Graphene.



Why strong coupling in graphene?

Small FS—> less screening Strong coupling.

$$e_f = \frac{e^2}{\hbar c} \frac{1}{v_F} \frac{1}{\epsilon}$$

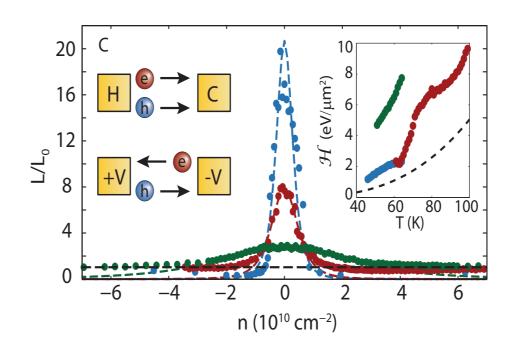
clean Graphene=Strong Coulomb

Wiedermann-Franz Law violation

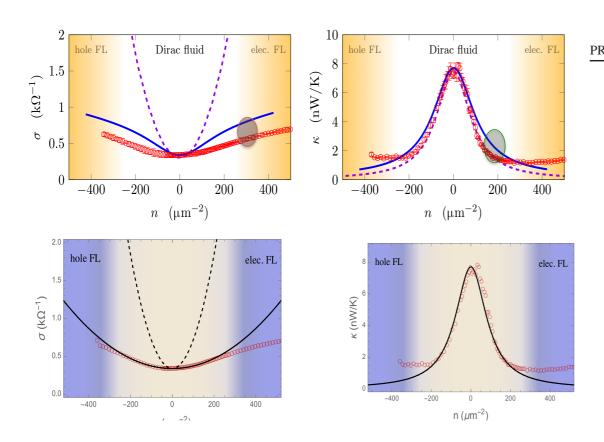
Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene

Jesse Crossno,^{1,2} Jing K. Shi,¹ Ke Wang,¹ Xiaomeng Liu,¹ Achim Harzheim,¹ Andrew Lucas,¹ Subir Sachdev,^{1,3} Philip Kim,^{1,2} Takashi Taniguchi,⁴ Kenji Watanabe,⁴ Thomas A. Ohki,⁵ Kin Chung Fong⁵*

4 March 2016



Transport anomaly in pure graphene



PRL 118, 036601 (2017)

PHYSICAL REVIEW LETTERS

week ending 20 JANUARY 2017

Holography of the Dirac Fluid in Graphene with Two Currents

¹Department of Physics, Hanyang University, Seoul 133-791, Korea ²Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

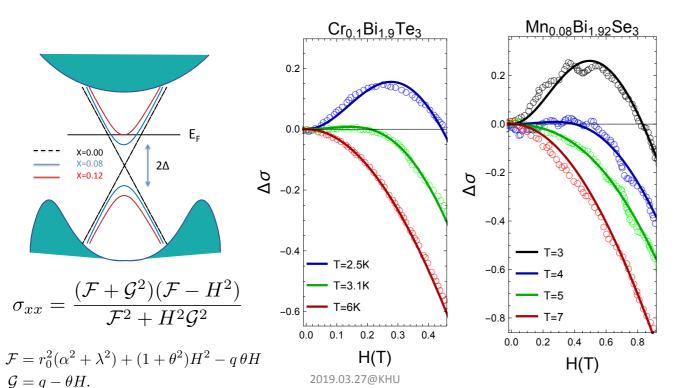
Phys.Rev.Lett. 118 (2017) no.3, 036601 **Editors' Suggestion**

Dirac material is a class of material with $\omega = k$

Surface of Topological Insulators

[1703.07361, prB, rapid comm 서윤석,송근호,SJS]

Theory fits not only for Cr doped Bi₂Te₃ but also Mn doped Bi₂Se₃



Strong Correlation Effects on Surfaces of Topological Insulators via Holography

Yunseok Seo, Geunho Song and Sang-Jin Sin Department of Physics, Hanyang University, Seoul 04763, Korea.

Published in Phys.Rev. B96 (2017) no.4, 041104 (rapid communications)

$$\sigma_{ij}(B,T,n_{imp})$$

Small Fermi Surfaces and Strong Correlation Effects in Dirac Materials with Holography Y. Seo, G. Song, C. Park + SJS

Published in JHEP 1710 (2017) 204

$$\kappa_{ij}(B, T, n_{imp})$$

II. Topological Stability of FL

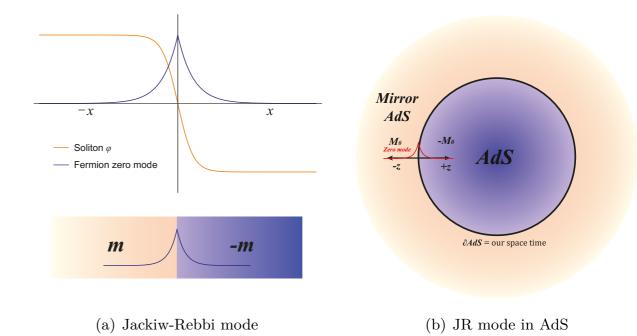
- In metal, $V_{ee} \sim E_F$, $g_{eff} \sim V_{ee}/E_K > 1$: strong interaction not weak at all.
- Why such strongly interacting system behave like a free electron system?
- Here we want to understand it as a topological stability just as the edge mode of TI.

Jackiw-Rebbi and Topology

 Jackiw-Rebbi: in the presence of bosonic soliton, there is a Fermionic zero mode localized at the boundary

$$(\gamma^{\mu}D_{\mu} - \phi)\psi = 0$$

- TI: fermion zero mode localized at the boundary.
- sign change of m is equivalent to impose a boundary condition m(0)=0 and



A holographic model

$$\widetilde{S} = S_{\Phi} + S_{\psi} + S_{bdy},$$

$$S_{\Phi} = \int d^{d+1}x \sqrt{-g} \left(D_{\mu} \Phi_{I}^{2} - m_{\Phi}^{2} \Phi^{2} \right), \qquad \Phi = M_{0}z + M_{1}z^{2}$$

$$S_{\psi} = \int d^{d+1} \sqrt{-g}x \, i\bar{\psi} \left(\Gamma^{\mu} \mathcal{D}_{\mu} - (m+g\Phi) \right) \psi,$$

$$S_{bdy} = i \int_{\partial M} d^d x \sqrt{-h} \bar{\psi} \psi,$$

$$ds^{2} = -\frac{f(z)}{z^{2}}dt^{2} + \frac{1}{z^{2}f(z)}dz^{2} + \frac{1}{z^{2}}\sum_{i=1}^{d-2}dx_{i}^{2}$$

$$f(r) = 1 - (z/z_H)^{d-1}$$
 for AdS_{d+1} and z_H is temperature by $z_H = (d-1)/4\pi T$.

The Jackiw-Rebbi solution in AdS

$$\left[\partial_z + \left(i K_\mu \Gamma^\mu + \frac{m+\Phi}{z} \right) \Gamma^z \right] \phi = 0, \text{ with } K_\mu = (-\omega, k_x, k_y),$$

$$\Phi = M_0 z + M z^2.$$

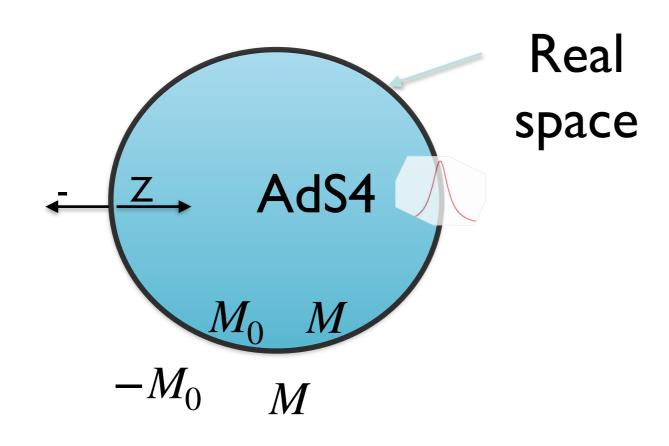
.
$$\left[\Gamma^z\partial_z-iK_\mu\Gamma^\mu+M_0+M_z\right]\phi=0$$
, cf: in flat space $(\gamma^\mu D_\mu\mp m)\psi=0$,

$$\phi_{0\pm}(z,x) = z^{\mp m} \exp(\mp g \int_0^z dz' \varphi(z')) \chi_{0+},$$
where $\varphi = \Phi/z$ for $z > 0$.
$$= M_0 \operatorname{sign}(z) + M_1 z.$$

$$\psi_{0-}^{(M_0)} = |z|^m e^{-M_0|z|} \chi_{0-}, \quad \psi_{0-}^{(M)} = |z|^m e^{-\frac{1}{2}M_1 z^2} \chi_{0-},$$

Fermion zero mode Localized at the boundary

Because AdS bdy=our real space, we suggest this edge mode as the Fermi liquid.

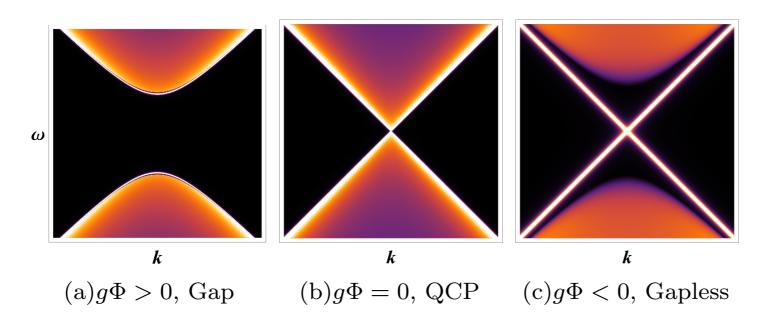




Character of Spectrum

$$(\Gamma^\mu \mathcal{D}_\mu - m - g\Phi)\,\psi = 0$$
 Exact solution, though not simple is available.

- 1. Metal-Insulator Transition by the sign change of the coupling.
- 2. Fermion zero mode in the presence of the scalar order.
- 3. Pole type Green fct $->\delta$ -function spectrum: characteristic!



Singularity types: (a,b): branch cut (c): simple Pole $\frac{1}{x-i0^{+}} = \frac{1}{x} + i\pi\delta(x)$

This is impossible in the flat spacetime.

Spectrum and Phases

8.0

0.6

0.4

0.2

BM

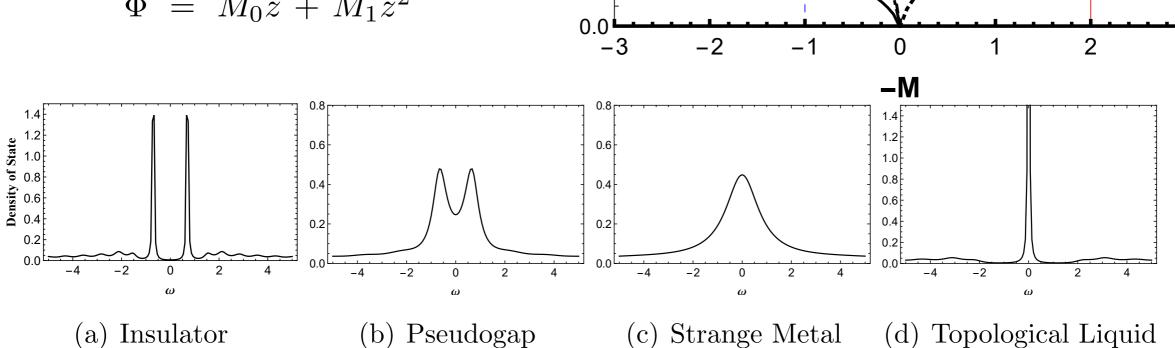
Insulator

Strange Metal

Topological Liquid

Draw DOS at each point (T, M) And classify the shapes to a few categories

$$\Phi = M_0 z + M_1 z^2$$

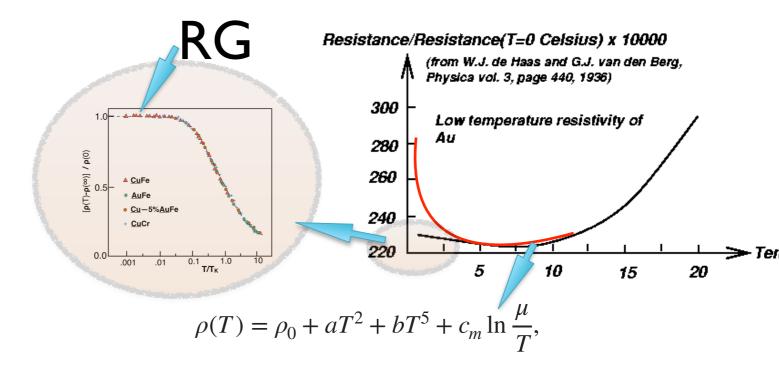


3

III. Random Kondo

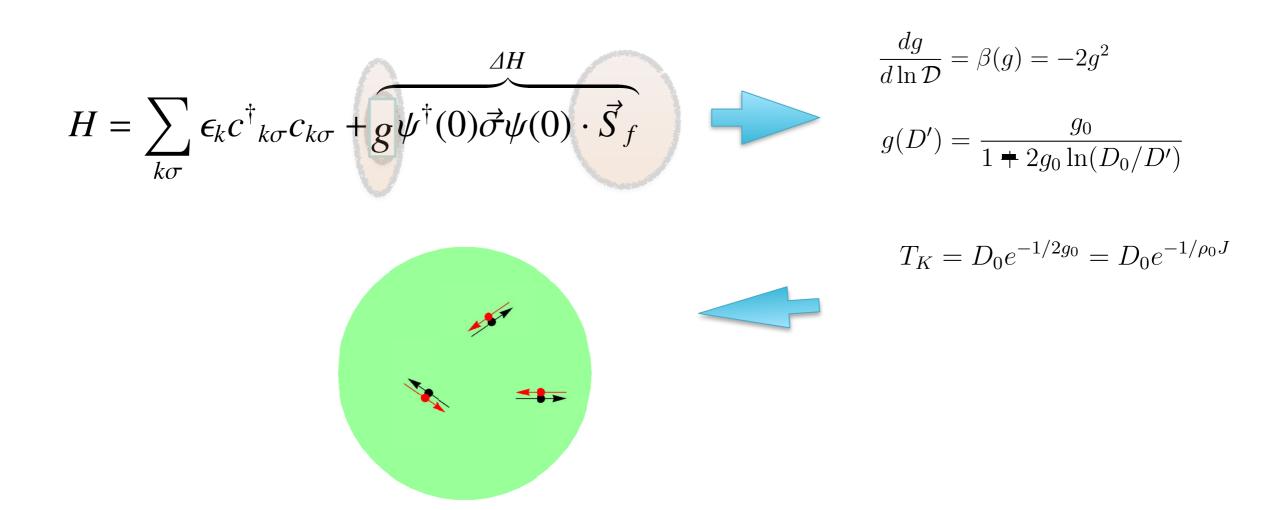
Main theme of talk: Random Kondo physics

1. Single Kondo: Feynman diagram + Wilson RG



Saturation of ρ in $T \to 0$

RG: imp-itinerant e coupling goes strong in IR: complete screening



2. Multi Kondo: ??? : coupling strong, impurity random,

Perhaps, Holography!

Collaborators

Exp.

Hyunsik Im

Eunkyu Kim

• • • • •

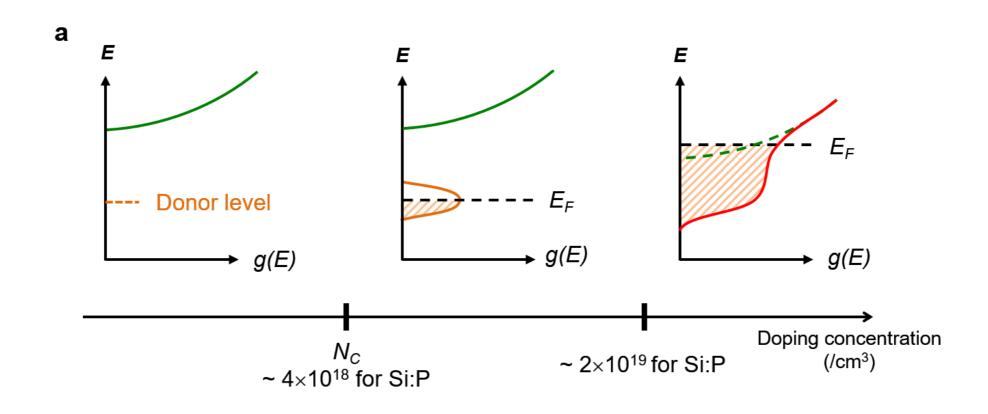
Found a coherence in a disordered semiconductor.

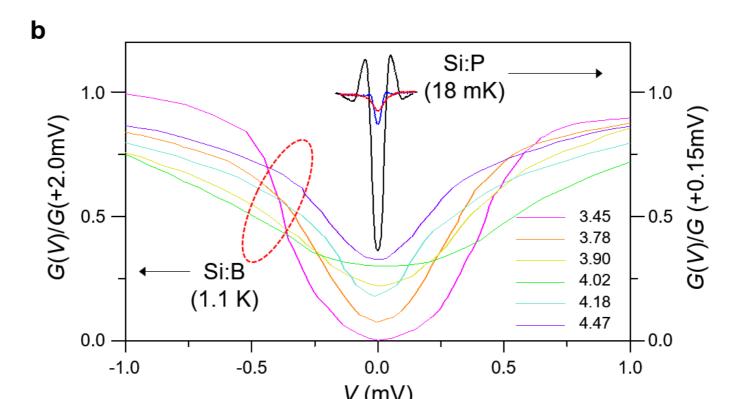
Th.

Taewon Yuk

Soonjae Moon

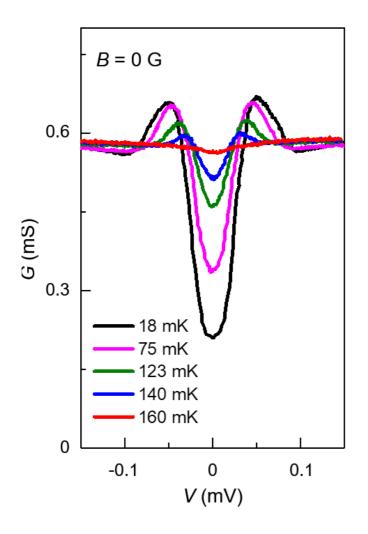
Doped Si, the material of our civilization! About 10 years ago, my exp. colleages discovered a puzzle.

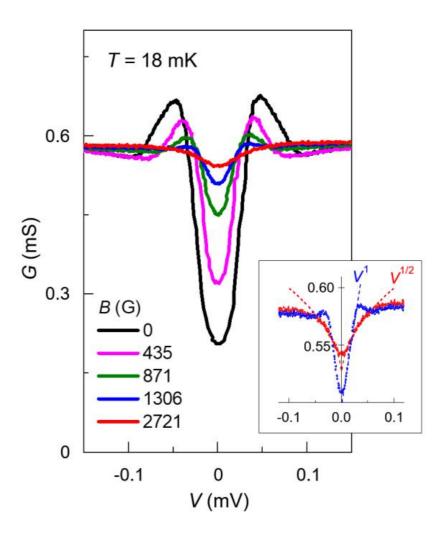




Observation of the pseudo gap and its Character

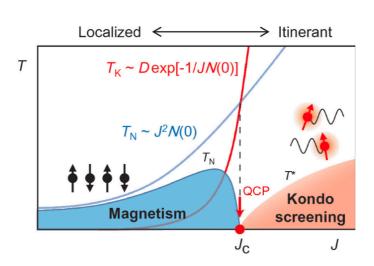
- The gap's shoulder looks like that of SC gap, but no evidence for SC!
- The gap disappear in high B, T





Hint from the previous study

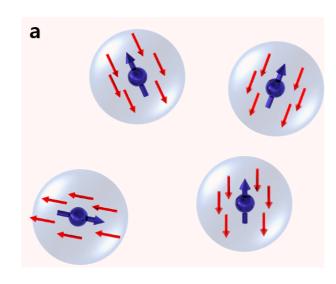
- It Has long been Known:
 Si:P has magnetic moments, although none of Si or P is magnetic material. (P.W. Anderson, Patrick Lee, Bhatt)
- Then, Kondo physics, many impurity one!
- At first sight, Presence of gap -> Order -> RKKY domination ?
- However, i) below 100mK, $g_{Kondo} > g_{RKKY}$

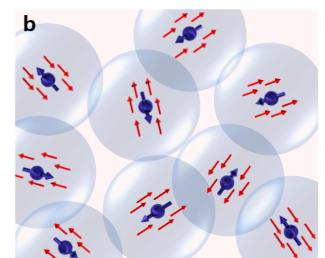


ii) random impurity would lead to spin glass without gap.

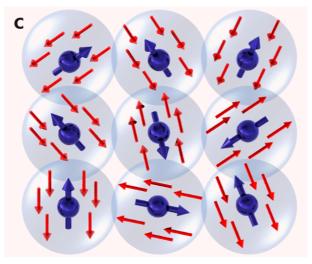
Many Kondo physics

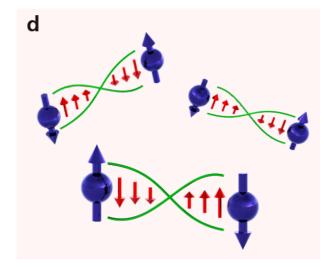
single Kondo





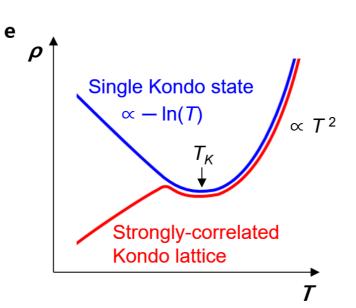
Kondo Lattice heavy fermion/Kondo insulator





RKKY weak coupling

below 100mK, $g_{Kondo} > g_{RKKY}$



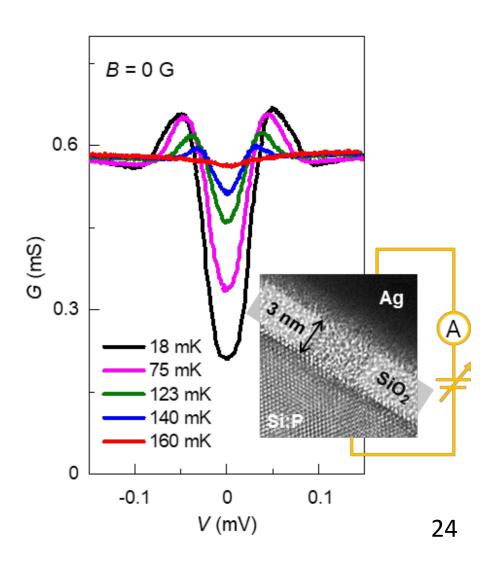
Difficulty of our system as Kondo lattice

If no periodicity—> No momentum!
 No band.

The whole picture of Kondo-lattice break down.

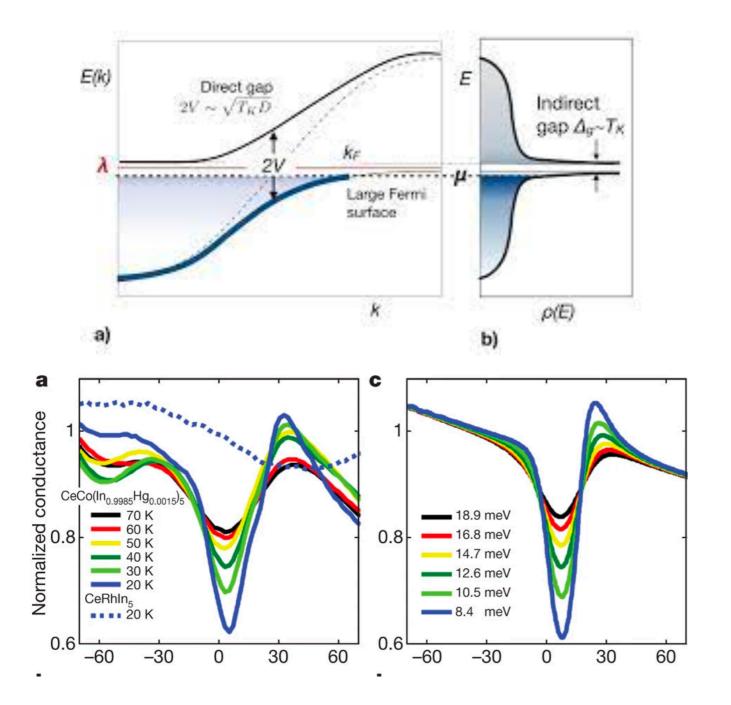
random singlet picture —> No gap!

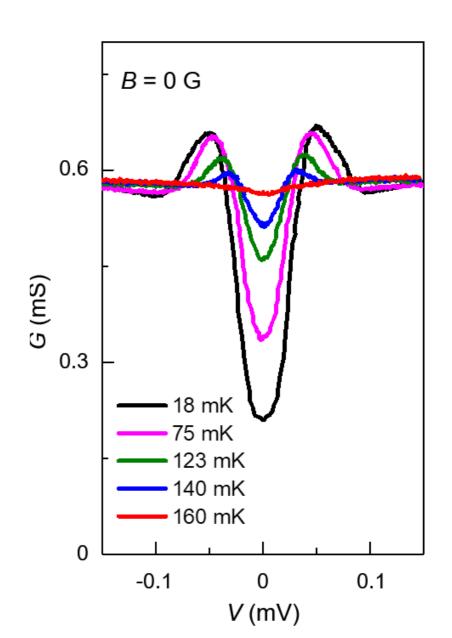
However,
 A gap is found in random impurity



Difficulty of our system as Kondo lattice II

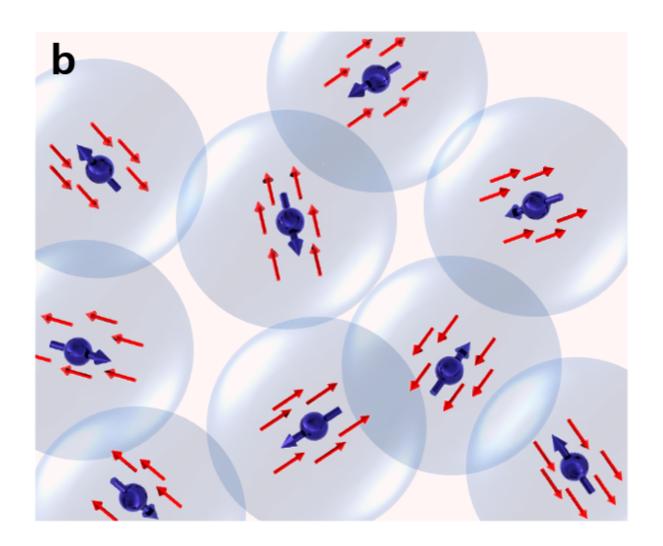
Kondo lattice has characteristic asymmetry in G(V)





Our proposal: dense Random multi-Kondo Overlapping Kondo cloud => Kondo condensation:

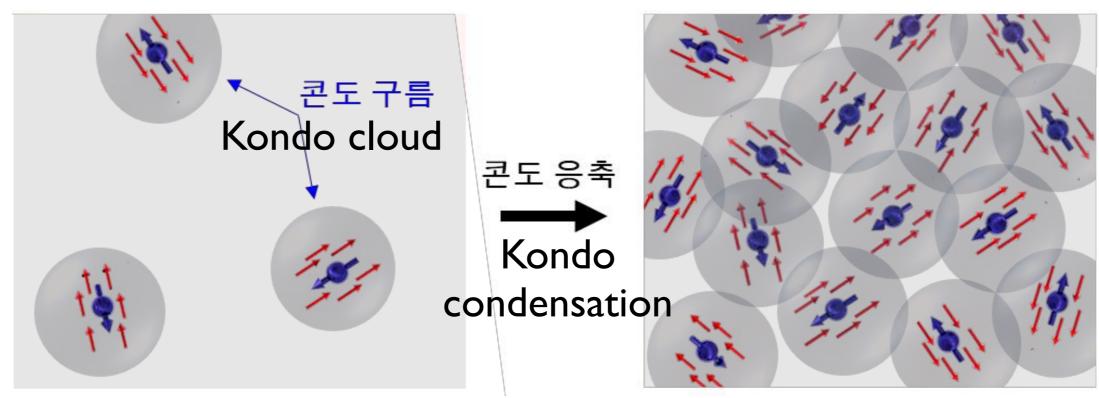
A key: size of Kondo cloud is $\sim 1\mu$, large!



Def. Of Kondo condensation cf Superconductivity

$$H = \sum_{i\sigma} \varepsilon_i^f f_{i\sigma}^{\dagger} f_{i\sigma} + U n_{i\uparrow} n_{i\downarrow} + \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}\sigma} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma} + \sum_{i,\vec{k},\sigma} V_k \left(e^{i\vec{k}\vec{R}_i} f_{i\sigma}^{\dagger} c_{\vec{k}\sigma} + e^{-i\vec{k}\vec{R}_i} c_{\vec{k}\sigma}^{\dagger} f_{i\sigma} \right)$$

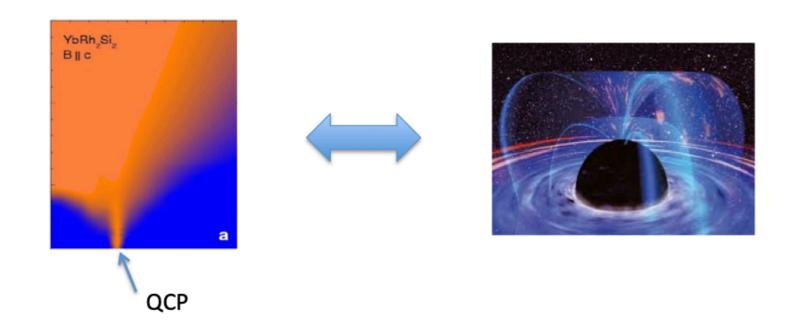
- Cooper pair=cc : $< cc> \neq 0 \rightarrow$ superconductivity
- Kondo pair = $f^{\dagger}c$: $< f^{\dagger}c > \neq 0 \rightarrow$ Kondo condensation



Yamamoto et. al.
 "Observation of the Kondo screening cloud"
 Nature 2020

How to calculate KC in the presence of randomness? Holography!

Why ads/cft help for randomness + strong coupling? Why it works? Universality



 Key point: Near QCP of a strongly correlated system, ordered and disordered systems are not much different by the universality.

Our Holographic Model and its result

$$\begin{split} S_D &= \int d^{d+1}x \sqrt{-g} \bar{\psi} (\Gamma^M D_M - m - \Phi) \psi + \int d^{d+1}x \sqrt{-g} (|\partial_\mu \Phi|^2 - m^2 \Phi^2) \\ D_M &= \partial_M + \frac{1}{4} \omega_{abM} \Gamma^{ab} - iq A_M, \end{split}$$

$$\Phi \sim f^\dagger c$$

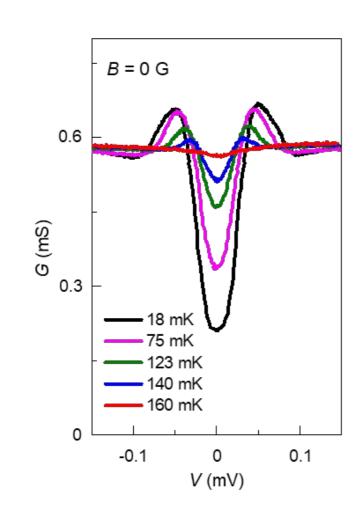
$$\Phi = \frac{\Phi^{(0)}}{r} + \frac{\Phi^{(1)}}{r^2} + \cdots$$

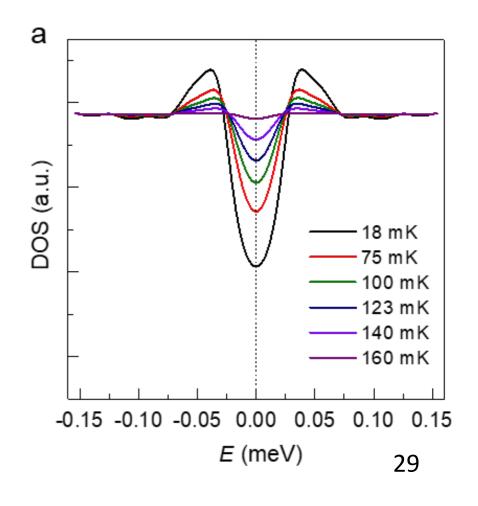
$$\Phi^{(0)} = 0, \quad \Phi^{(1)} = M_0 \sqrt{1 - T/T^*}$$

$$ds^{2} = -r^{2}f(r)dt^{2} + \frac{1}{r^{2}f(r)}dr^{2} + r^{2}d\vec{x}^{2}$$
$$f(r) = 1 - \frac{r_{0}^{3}}{r^{3}} - \frac{r_{0}\mu^{2}}{r^{3}} + \frac{r_{0}^{2}\mu^{2}}{r^{4}}.$$

$$T \to \frac{k_B T}{\hbar v_F} L = \frac{\hat{T}}{Kelvin} \frac{L}{2.3 \times 10^6 nm}$$
$$B \to \frac{e}{\hbar} B L^2 = \frac{\hat{B}}{Tesla} \frac{L^2}{(25.7nm)^2}$$

$$M_0 \to \frac{M_0}{(\hbar v_F)^2} L^2 = \frac{9v_0^2}{4v_F^2} \frac{L^2}{(nm)^2} \frac{M}{(eV)^2}$$





Holographic Kondo Lattice

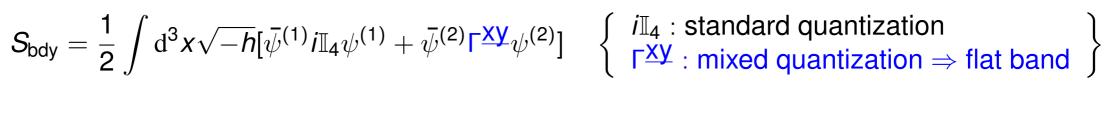
$$S_{\text{tot}} = S_{\text{background}} + S_{\text{bulk}} + S_{\text{int}} + S_{\text{bdy}},$$

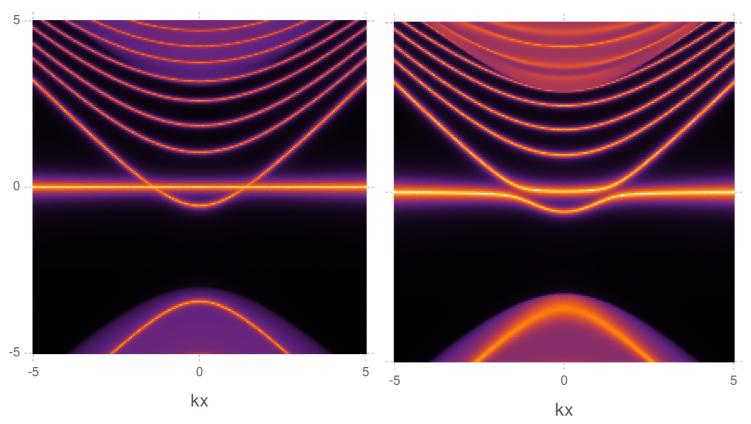
$$S_{\text{bulk}} = \sum_{j=1}^{2} \int d^{4}x \sqrt{-g} i \overline{\psi}^{(j)} \left[\frac{1}{2} (\overrightarrow{D} - \overleftarrow{D}) - m \right] \psi^{(j)}$$

$$S_{\text{int}} = \sum_{i,k=1}^{2} \int d^4 x \sqrt[4]{-g} \bar{\psi}^{(j)}(\text{int})^{(jk)} \psi^{(k)} \qquad \left\{ \begin{array}{l} (\text{int})^{(11)} : \text{shifted parabolic band} \\ (\text{int})^{(12),(21)} : \text{hybridization} \end{array} \right\}$$

$$S_{\text{bdy}} = \frac{1}{2} \int d^3x \sqrt{-h} [\bar{\psi}^{(1)} i \mathbb{I}_4 \psi^{(1)} + \bar{\psi}^{(2)} \Gamma^{XY} \psi^{(2)}]$$

YoungKwon Han



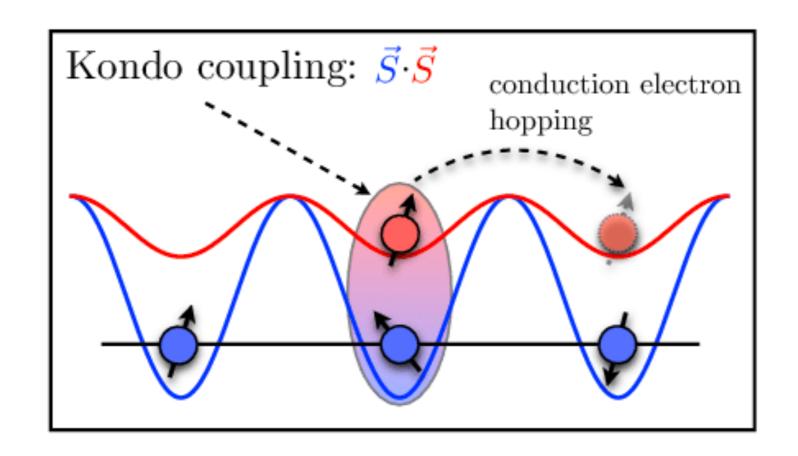


Conclusion

- We introduce Kondo condensation a dense random Kondo system where Kondo cloud overlaps.
- It forms a new state of quantum matter
- It can be treated by the holography, a mean field theory for strongly coupled system.

Thank you

Kondo lattice



Essence of the Kondo Lattice physics:

Electron trapped and propagate rarely from site to site.

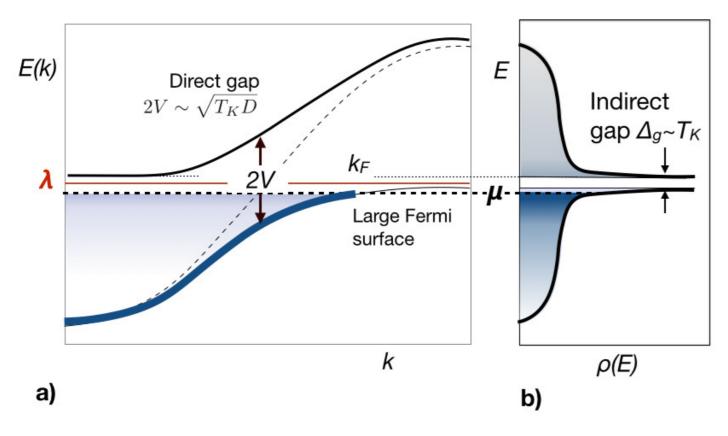
On a larger length scale, a very slow coherent motion

= a quasi-particle with a large effective mass.

Kondo lattice (mean field theory)

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \begin{pmatrix} \epsilon_{\mathbf{k}} & V \\ \bar{V} & \lambda \end{pmatrix} \begin{pmatrix} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{pmatrix} + N \mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right)$$

mean field theory



$$E^{\pm} = \frac{\mp D + \lambda}{2} \pm \sqrt{\left(\frac{\mp D - \lambda}{2}\right)^2 + V^2} \approx \lambda \pm \frac{V^2}{D},$$

$$T_K \sim V^2/D$$
: 1 – Kondo Temp.

FS in gap-> K insulator, otherwise Heavy Fermion w/ larger FS